

64

Boxes and Arrows

There are two kinds of variables in Java: those that store primitive values and those
that store references. Primitive values are values of type

long

,

int

,

short

,

char

,

byte

,

boolean

,

double

, and

float

. References are used to access objects. A box is a good met-
aphor for either kind of variable.

Drawing boxes for primitive variables is easy. The contents of the box is the stored
primitive value. A few examples appear below.

An object is drawn as a box that contains its data members, for example:

Finally, a reference to an object (returned by

new

) is drawn as an arrow:

A reference-valued variable is sometimes referred to as a

pointer

.

an

int

 variable a

boolean

 variable a

double

 variable a

char

 variable

class Account {
private double myBalance;
private long myId;
private boolean isSpecial;

...
}

class Account {
private double myBalance;
private long myId;
private boolean isSpecial;

...
}

...

Account mike = new Account (...);

class Word {
private String myChars;

...
}

...
Word toGuess = new Word ("syzygy");

3 true 7.59 'X'

myBalance

myId

isSpecial

1523.67

12345678

true

myBalance

myId

isSpecial

mike

toGuess myChars

"syzygy" box

65

How the assignment statement relates to boxes

An assignment statement merely copies the value in one box to another. When the
box contains a reference—an arrow—two references to the same object result. Below
are some sequences of assignment statements, along with their box-and-arrow repre-
sentations. We start with

int

 variables:

In almost all programming languages, the effect is the same: the value 5 in

m

 gets
copied into

n

, then the value 7 gets copied into

m

, replacing the 5 that it formerly
contained.

Now consider an

Account

 class with a single data member named

myBalance

 and
three methods, a constructor, a

deposit

 method, and a

withdraw

 method.

public class Account {

public Account (int initAmount) {
myBalance = initAmount;

}

public void deposit (int amount) {
myBalance += amount;

}

public void withdraw (int amount) {
myBalance -= amount;

}

private int myBalance;

}

Here, the reference value initially stored into

a

—namely, the arrow—is copied into

b

.
After the assignment statement,

a

 and

b

 contain references to the same account.
A new reference value is then created via the

new

 operator, and that reference is
stored into

a

, replacing

a

’s former contents.

int m, n;
m = 5;

n = m;
m = 7;

Account a = new Account (100);

Account b = a;
a = new Account (200);

m

5

n

?

m

7

n

5

a

100

a b

100200

box

66

Let’s try another one.

A reference to a new account is stored into

a

. That reference (the arrow) is copied
into

b

; both variables now contain references to the same account. The withdrawal
from that account is visible either through

a

’s reference or through

b

’s.

In C (without

struct

s) and Scheme, we have essentially the same behavior. Code seg-
ments that have the effect of the example just discussed appear below.

Parameter passing

All method parameters in Java are passed

by value

, which means they are copied
into temporary variables in the function. As with the assignment statement, the
copying of a reference involves only the reference itself, not the object referred to.
(Again, this is the same behavior as in C and Scheme.)

Suppose we supply an additional method for the

Account

 class:

public void make900 (Account a) {
a = new Account (900);

}

Consider now the effect of the two assignment statements

mike = new Account (2000);
make900 (mike);

The first sets up a reference to an account with a balance of $2000

The second statement, a call to

make900

, creates a copy of the

mike

 reference and
stores it in the variable

a

 (which is local to

make900

).

Account a = new Account (100);

Account b = a;
a.withdraw (10);

C Scheme

int a[1] = {100};
int* b = a;
a[0] -= 10;

(define a '(100))
(define b a)
(set-car! a (- (car a) 10))

a

100

a b

90

mike

2000

mike

2000

a

box

67

Within

make900

, a reference to a new account is created and stored into

a

. The effect
is shown below.

Upon return from

make900

, the local variable

a

 disappears and the

mike

 reference
still points to the account with $2000.

Consider now a method

make99

 defined inside the

Account

 class:

public void make99 (Account a) {
a.myBalance = 99;

}

Contrast the effect of the two sequences of assignment statements:

For one final example, we consider the following method:
public void swap (Account a, Account b) {

Account temp;
temp = a;
a = b;
b = temp;

}

...
Account mike = new Account (3000);
Account carol = new Account (1500);
swap (mike, carol);

assignment statements result immediately before returning from the method

mike = new Account (2000);
make900 (mike);

mike = new Account (2000);
make99 (mike);

mike

2000

a

900

mike

2000

a

900

mike

99

a

box

68

What’s the effect of the call to swap? It has no effect on either of the accounts. Here’s
why. We start with the initialization of mike and carol:

Then we enter the method, copying the argument references to the local variables a
and b:

After the first two assignments, we have

The final assignment statement copies a reference to Mike’s account into b. Neither
the mike variable, the carol variable, nor the corresponding Account objects are mod-
ified by the swap method.

mike

3000

carol

1500

mike

3000

carol

1500

a

b

temp

mike

3000

carol

1500

a

b

temp

box

69

Comparisons
A comparison of two references using == determines whether the two things com-
pared are references to the same objects. (This behavior is the same as in C, and the
same as what the eq? function provides in Scheme.)

Here’s an example.

After execution of the four statements, comparisons between the reference values
would have the results shown below.

Comparison of two objects in Java is conventionally done with the equals method as
shown below.

public boolean equals (Account a) {
return this.myBalance == a.myBalance;

}

Account a = new Account (100);
Account b = a;
a.withdraw (10);
Account c = new Account (90);

expression value reason

a == b true both a and b refer to the same object

a == c false a and c refer to different objects, even though those
objects both have the same balance

b == c false same reason

a b

90

c

90

box

