
Welcome to CS 61BL!
Quote of the week: “Speak casually, but never think casually.”

Your TAs! Say hello to them if you see them around!

Let’s introduce the staff

Me…

NOT a professor. A Berkeley alumnus.

Call me Joseph, or Joe, or Joey…

Technical interests: NLP, machine
learning, AI

Office hours: M 4-6, Tu 2-4, W 12-2
in 329 Soda

Let’s introduce the staff

A lab-based course

The sequel to CS 61A

A class about data structures and programming
methodology

What is this class?

Learn by doing!

Lecture isn’t very useful…

Collaboration over competition

A lab-based course

61A (or some equivalent) is a required prereq

Not just how to program, but how to program well

Expect more work than CS 61A

Homework now graded on correctness. But no more
autograders…

For other course policies (grading, etc.) please see the
course webpage

The sequel to CS 61A

All code
appears in a
class

What you know about Java

public class Counter {
 // Code goes here
}

Here, we define a
method (function)
inside the class

What you know about Java

public class Counter {

 public void printOne() {
 System.out.println(1);
 }
}

The equivalent Python. Talk to your partner. What does this
code do if we were to run it?

What you know about Java

public class Counter {

 public void printOne() {
 System.out.println(1);
 }
}

class Counter:

 def print_one(self):
 print(1)

Code outside a definition tells Python to actually do something

What you know about Java

class Counter:

 def print_one(self):
 print(1)

c = Counter()
c.print_one()

main tells Java to actually do something

What you know about Java

class Counter:

 def print_one(self):
 print(1)

c = Counter()
c.print_one()

public class Counter {

 public void printOne() {
 System.out.println(1);
 }

 public static void main(String[] args) {
 Counter c = new Counter();
 c.printOne();
 }
}

To understand our Java programs, it will be helpful
to draw them

Drawing Java

The code we’ll be drawing

Drawing Java

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c;
 new Counter();
 c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c;
 new Counter();
 c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c;
 new Counter();
 c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.printNumber(x);
 }
}

public class Counter {

 public void printNumber(int num) {
 int x = 3;
 System.out.println(num);
 System.out.println(this);
 num = 10;
 }

 public static void main(String[] args) {
 int x = 5;

 c.printNumber(x);
 }
}

class Counter:

 def print_number(self, num):
 x = 3
 print(num)
 num = 10

x = 5
c = Counter()
c.print_number(x)

The equivalent Python has self to refer to the object that
called the method. Does Java have such a thing?

A break.

It’s a long two hours.

And now…

public class Counter {
 int myValue = 0;

 public void increment(int x) {
 this.myValue += x;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.increment(x);
 System.out.println(c.myValue);
 }
}

Objects can have variables inside

Drawing Java

Objects can have variables inside

Drawing Java

public class Counter {
 int myValue = 0;

 public void increment(int x) {
 this.myValue += x;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.increment(x);
 System.out.println(c.myValue);
 }
}

Objects can have variables inside

Drawing Java

public class Counter {
 int myValue = 0;

 public void increment(int x) {
 this.myValue += x;
 }

 public static void main(String[] args) {
 int x = 5;
 Counter c = new Counter();
 c.increment(x);
 System.out.println(c.myValue);
 }
}

Objects can have references to other objects inside

Drawing Java

public class Counter {
 int myValue = 0;
 Counter other;

 public static void main(String[] args) {

 Counter c = new Counter();
 c.other = new Counter();
 c.other.myValue = 1;
 }
}

Often we abbreviate diagrams

Drawing Java

Stack and heap diagrams…

Are not literally how your computer’s memory
works

They are useful models for understanding what
your program does

In this class, we are mainly concerned with the heap
(leave stack frame craziness for 61A!)

Drawing Java

Additional points…

References do not point to other references, only to
objects

Objects do not contain other objects, only
primitives and references

A new object is created only if there is a call to new

Drawing Java

Quiz time!

(More quizzes, even in lecture?!)

Be chill. It’s worth 1 ec point. And you can work
with your partner.

One sometime in every lecture…

Your turn!

Draw everything by the end of the main method.

Your turn!

public class Thing {
 int myValue;
 Thing myThang;

 public static void main(String[] args) {
 Thing firstThing = new Thing();
 int num = 2;
 Thing currentThing = firstThing;
 currentThing.myValue = num;
 while (num > 0) {
 num--;
 currentThing.myThang = new Thing();
 currentThing.myThang.myValue = num;
 currentThing = currentThing.myThang;
 }
 }
}

public class Thing {
 int myValue;
 Thing myThang;

 public static void main(String[] args) {
 Thing firstThing = new Thing();
 int num = 2;
 Thing currentThing = firstThing;
 currentThing.myValue = num;
 while (num > 0) {
 num--;
 currentThing.myThang = new Thing();
 currentThing.myThang.myValue = num;
 currentThing = currentThing.myThang;
 }
 }
}

Now that we have primitives, objects, and references,
we have almost all of Java

The next major piece is the array

Arrays

You may remember the list from Python

An array is like a list, but more limited

It can only store objects of one type!

It is a fixed size.

Arrays and lists

Declare an int variable like so…

int x = 3;

Declare an array of ints like so…

int[] arr = new int[4];

You can put things in it like so:

arr[2] = 10;

Declaring an array

The third thing in
arr is now 10

[] tells you it’s an array type…
4 indicates the array

will hold 4 things

An array itself is an object, so it has a reference to it
 int[] arr = new int[4];

Drawing an array

We can change things in the array
 int[] arr = new int[4];
 arr[3] = 7;

Drawing an array

An array of objects starts out full of null

 Thing[] things = new Thing[2];

Drawing an array

When we put objects inside, we just get references to
the object

 Thing[] things = new Thing[2];
things[0] = new Thing();

Drawing an array

Let’s talk about the cheating policy.

(Sorry)

A nice topic

For in-lab quizzes and exams, the normal policy: you’re totally
on your own.

For labs and group projects, you can share everything within
your partnership/group

For labs, high-level collaboration is allowed across-partnership
during lab time only. Can discuss ideas, but no direct sharing of
code

For group projects, essentially no collaboration is allowed
outside your group

What constitutes cheating?

Do NOT host your code publicly online (such as on
Github — use BitBucket if you don’t have a private)

Don’t look up answers to lab exercises online, but you
can look up general how-to Java (in fact, this is
encouraged)

If you get ideas from another partnership, or if you
take significant code from online, please provide a
citation as a comment.

What constitutes cheating?

The exam times are

Friday, 10 July, 7-9 pm

Friday, 31 July, 7-9 pm

Friday, 14 August 3-6 pm

If you have conflicts, please email me ASAP. Before the end of
this week. If you don’t I cannot guarantee you a make-up.

Please provide a reason, and exactly what time it takes up

Another nice topic

Introducing the first project! (Released Monday)

Project 1 demo

