
Practical Polymorphism,
and Intro Iterators

Quote of the week:
“Everybody has a secret world inside of them. All of the
people of the world, I mean everybody. No matter how
dull and boring they are on the outside, inside them
they’e all got unimaginable, magnificent, wonderful,

stupid, amazing worlds. Not just one world. Hundreds of
them. Thousands maybe.”

If you haven’t started project 1…

Uh…

Uh oh.

You should start today!

Labs are now mostly graded

Caveat: late points and failure-to-do-survey
points haven’t been taken away yet

By the way…

Lecture slides are posted before lecture

You can follow along on your laptop, if you
don’t like looking at the screen

(Try not to get distracted!)

Inheritance, an overview

One class can extend another.

The extending class is called a subclass. The
extended class is called a superclass.

The subclass inherits all the public (and

protected) instance variables and methods of
the superclass.

Some classes
public class Animal {

 /* All animals deserve to live a good life */
 public void liveAGoodLife() {
 while (true) {
 eat();
 sleep();
 }
 }
 public void eat() {
 System.out.println(“nom”);
 }
 public void sleep() {
 System.out.println(“zzz”);
 }
}

Some classes

public class Capybara extends Animal {

 @Override
 public void liveAGoodLife() {
 eat();
 sleep();
 swim();
 }
 public void swim() {
 System.out.println(“piddle paddle”);
 }
}

A Capybara can still eat and sleep

…but also swims.

Some classes

public class Pangolin extends Animal {

 @Override
 public void liveAGoodLife() {
 eat();
 sleep();
 dig();
 }
 public void swim() {
 System.out.println(“dig dig”);
 }
} A Pangolin likes to dig instead

Some classes

public class Wug extends Animal {

 @Override
 public void liveAGoodLife() {
 eat();
 sleep();
 System.out.println(“???”);
 }
} Does anyone know

what a wug is?

The subclass may override (change) some of
the methods it inherits.

But it can’t get rid of them.

No matter what, the subclass will contain
all the methods of the superclass.

Introducing polymorphism

Earlier, we saw diagrams like this:  
 
 
 
 

Was it redundant to label the type twice?

Nope!

Animal a Animal

Static and dynamic type

Animal a = new Animal();

Static type

Dynamic type

Why “static” and “dynamic”?

Maybe it’s better for you to think of them as
reference type and object type.

Introducing polymorphism

The static type must be the same as the
dynamic type, or some superclass/interface of it

Animal a = new Capybara();

Animal a = new Pangolin();

Polymorphism, many forms, is the idea that
one reference can hold different underlying
types

a could be a reference to any type of animal:
Capybara, Pangolin, Wug…

Luckily, they are all guaranteed to be able to
live a good life. In their own way.

 public void watchAnimal(Animal a) {
System.out.println("What a beautiful
animal! I will watch it forever.”);

 a.liveAGoodLife();
 }

The subclass may override (change) some of
the methods it inherits.

But it can’t get rid of them.

No matter what, the subclass will contain
all the methods of the superclass.

Memories…

a could be a reference to any type of Animal:
Capybara, Pangolin, Wug…

Luckily, they are all guaranteed to be able to
live a good life. In their own way.

So, nothing could possibly go wrong.
Polymorphism works!

 public void watchAnimal(Animal a) {
 a.liveAGoodLife();

System.out.println("What a beautiful
animal!");

 }

Why “static” and “dynamic”?

Slightly non-standard terminology

But…

Why “static” and “dynamic”?

Static type can be determined from static
analysis, i.e., without running the code.

Dynamic type cannot be determined for sure
until running the code.

Really?

Yes, really.

Strange dynamic type…
public class Animal {

 public static void main(String[] args) {
 String userInput = args[0];

 Animal a = null;
 if (userInput.equals("capybara")) {
 a = new Capybara();
 } else if (userInput.equals("pangolin")) {
 a = new Pangolin();
 } else {
 a = new Wug();
 }

 a.liveAGoodLife();
 }
}

What is the dynamic type of
the object referenced by a?

Polymorphism Questions!

For each of the following questions, discuss
what you think will happen with your
partner.

Then we’ll see what people think!

(This is not the actual quiz for this lecture)

What does it print?

Capybara c = new Capybara();
c.liveAGoodLife();

Animal a = new Capybara();
a.liveAGoodLife();

What does it print?

Animal a = new Capybara();
a.swim();

What does it print?

Animal a = new Capybara();
Capybara c = a;
c.swim();

Capybara c = new Capybara();
Animal a = c;
a.liveAGoodLife();

Polymorphism Questions!

Now say we define a class Person, and give
it the following method

 public void feedCapybara(Capybara c) {
 c.eat();
 }

Polymorphism Questions!

What does the following do?

Animal a = new Capybara();
Person p = new Person();
p.feedCapybara(a);

 public void feedCapybara(Capybara c) {
 c.eat();
 }

Polymorphism Questions!

Now we add the following methods to Person

 public void observe(Animal a) {
 a.getObservedBy(this);
 }

 public void observe(Capybara c) {
 System.out.println(“I love capybaras!”);
 }

 public void observe(Pangolin p) {
 System.out.println(“Oh. A pangolin.”);
 }

Polymorphism Questions!

And the following method to Animal

 public void getObservedBy(Person p) {
 p.observe(this);
 }

Polymorphism Questions!

And the following method to Capybara

@Override
public void getObservedBy(Person p) {
 p.observe(this);
}

Overrides to do
the same thing??

Polymorphism Questions!

What do the following do?
Pangolin pang = new Pangolin();
Person p = new Person();
p.observe(pang);

 public void observe(Animal a) {
 a.getObservedBy(this);
 }

 public void getObservedBy(Person p){
 p.observe(this);
 }

 public void observe(Pangolin c) {
 System.out.println(“Oh. A pangolin.”);
 }

Polymorphism Questions!

What do the following do?
Animal a = new Pangolin();
Person p = new Person();
p.observe(a);

 public void observe(Animal a) {
 a.getObservedBy(this);
 }

 public void getObservedBy(Person p){
 p.observe(this);
 }

 public void observe(Pangolin c) {
 System.out.println(“Oh. A pangolin.”);
 }

Polymorphism Questions!

What does the following do?
Animal a = new Capybara();
Person p = new Person();
p.observe(a);
 public void observe(Animal a) {
 a.getObservedBy(this);
 }

 public void observe(Capybara c) {
 System.out.println(“I love capybaras!”);
 }

 public void getObservedBy(Person p){
 p.observe(this);
 }

@Override
public void
getObservedBy(Person p) {
 p.observe(this);
}

In Capybara

In Animal

Practical polymorphism

Polymorphism gets hairy in Java

Lots of rules about what gets called when,
what’s allowed, etc. See your lab and reading.

Instead, let’s focus on how/why it is actually
used

Polymorphism use case 0:
Maintaining abstraction barriers

It’s common to see code like

List l = new ArrayList();

Why?

If it doesn’t matter that the list is
underlyingly an array, there’s no reason to
keep that information around

Abstraction means hiding unimportant
implementation details

Consider the method:  
 
 
 
 

Why should it have to take in an
ArrayList? Why not a LinkedList? Or
some other kind of List? It only relies on
List methods.

 public static void append(ArrayList base,
ArrayList addition) {
 for (Object o : addition) {
 base.add(o);
 }
 }

public static void append(List base, List
addition){
 for (Object o : addition) {
 base.add(o);
 }
}

Better:  
 
 
 

Now someone could use this to process any
type of list. Makes sense (for this method),
right?

public static void append(Object base, Object
addition){
 for (Object o : addition) {
 base.add(o);
 }
}

Bad:

 
 
 
 

Doesn’t even work! Object doesn’t have an
add method, and can’t be iterated through

Moral of the story

Make the static type as general as possible,
given what you need the object to do

So you won’t accidentally rely on details you
shouldn’t

Polymorphism use case 1:
Extending functionality

ArrayList has some cool methods.

But you know what method it doesn’t have?

A favoriting method.

(I just made this up)

FavoritableList works like an
ArrayList, except you can favorite an item
at a position, and then get it back whenever
you want.

Two additional methods:

 /* Favorites the item at position i */
 public void favorite(int i)

 /* Returns the favorite item */
 public Object getFavorite()

Here’s how we could do it:

public class FavoritableList extends ArrayList {
 Object myFavorite;

 /* Favorites the item at position i */
 public void favorite(int i) {
 myFavorite = this.get(i);
 }

 /* Returns the favorite item */
 public Object getFavorite() {
 return myFavorite;
 }
}

We can still get from
this, because it is an

ArrayList!

ArrayList is a pretty useful class.

But you know how it could be more useful?

If it was sorted.

All the time.

SortedList works like an ArrayList,
except it is always sorted. It only stores
integers.

(We can say it maintains an invariant that its
items are always sorted)

public class SortedList extends ArrayList<Integer> {

 /* Adds the integer to the list in sorted place */
 @Override
 public boolean addd(Integer x) {
 int pos = 0;
 while (pos < this.size() && this.get(pos) < x) {
 pos++;
 }
 super.add(pos, x);
 return true;
 }

/* No matter what, keeps list in sorted order */
 @Override
 public void add(int position, Integer x) {
 this.add(x);
 }
}

Changing this method!

Take advantage of the old
ArrayList add method,

to modify ArrayList’s
private variables

Call our own add, which
keeps sorted order

Moral of the story

Use inheritance to add small bits of extra
functionality to classes that already exist

Piggyback off existing functionality

Polymorphism use case 2:
Simplifying code structure

public class Piece {
 private String myType;

 public Piece(String type) {
 myType = type;
 }

 @Override
 public String toString() {
 if (myType.equals("pawn")) {
 return "I'm not important.";
 } else if (myType.equals("bomb")) {
 return "I'm dangerous!";
 } else if (myType.equals("shield")) {
 return "I'm scared.";
 } else {
 return "???";
 }
 }
}

A Piece class, like your project.
But takes in a type with a String.

Problem: All methods in
this class need long

conditionals to account
for type.

Problem: What if
the user input a bad

type?

public class Piece {
 private String myType;

 public Piece(String type) {
 if (!(myType.equals(“pawn”) || myType.equals(“bomb”)
 || myType.equals(“shield”)) {
 // fail somehow?
 }
 myType = type;
 }

 @Override
 public String toString() {
 if (myType.equals("pawn")) {
 return "I'm not important.";
 } else if (myType.equals("bomb")) {
 return "I'm dangerous!";
 } else if (myType.equals("shield")) {
 return "I'm scared.";
 } else {
 return "???";
 }
 }
}

A solution to invalid type
problem? But more

conditionals…

What if we want to add a new type of piece?

public class Piece {
 private String myType;

 public Piece(String type) {
 if (!(myType.equals(“pawn”) || myType.equals(“bomb”)
 || myType.equals(“shield”) || myType.equals(“knight”)){
 // fail somehow?
 }
 myType = type;
 }
 @Override
 public String toString() {
 if (myType.equals("pawn")) {
 return "I'm not important.";
 } else if (myType.equals("bomb")) {
 return "I'm dangerous!";
 } else if (myType.equals("shield")) {
 return "I'm scared.";
 } else if (myType.equals("knight")) {
 return "I'm chivalrous!”;
 } else {
 return "???";
 }
 }
}

Problem: Have to go back
to our code and modify

every single old method…

But there is hope!

public abstract class Piece {

}

public class Pawn extends Piece {
 @Override
 public String toString() {
 return "I'm not important.";
 }
}

public class Knight extends Piece {
 @Override
 public String toString() {
 return "I'm chivalrous!”;
 }
}

Much simpler logic!

Impossible to make a
Piece of a bad type!

Easy to add a new
kind of Piece!

Moral of the story

Using polymorphism can simplify code by
eliminating conditionals, making type
guarantees, and allowing easier extension

Tradeoff: Lots of additional separate classes

Conclusion to polymorphism

As you may have found in lab, overuse of
polymorphism can lead to confusing code

But when applied tastefully, it provides
several big wins

The best part of lecture!

Yes!!

Break!

Cool collections

In this class, we’ll study data structures that
store collections of data in interesting ways

Arrays, lists, trees, dictionaries…

Iteration

When we have a collection of data, usually we want to
compute something about it

Ex: Given a list of all students in the class, compute
their average age

Ex: Given a person’s family tree, compute a person’s
ethnic make-up

This computation will commonly involve looking at each
item stored in the collection, one-by-one. This process is
called iteration

Iterate using a for loop

How to iterate over an array:

Would this work for a tree?

 char[] arr = { 'a', 'b', 'c', 'd' };
 int i = 0;
 while (i < arr.length) {
 char item = arr[i];
 // do some computation with item
 i++;
 }

Introducing the Incredible Iterator

We’d like a more abstract way of iterating,
that would work for any data structure

Iterating over a tree, or other data structures,
could get complicated

We’ll manage the iteration using an iterator
object.

Iterate using an iterator!

How to iterate over an array:

Would this work for a tree?

 Array arr = new Array('a', 'b', 'c', 'd');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();

// do some computation with item
 } (normal arrays don’t

actually have
a .iterator()

method. But other
collections we find will.)

An object… for iterating?

Are you serious?

Yes.

An object… for iterating?

I like to think of the iterator object as a little
insect that crawls along the data structure.

Hi, I’m an
iterator!

An object… for iterating?

First, we create a new iterator object. This places
down a new ant at the beginning of the array.

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

An object… for iterating?
We ask the ant if it can continue.

Do you have
a next?

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

An object… for iterating?
We ask the ant if it can continue.

Yes!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

Then we tell it to give us the next.

An object… for iterating?

Well, give
me the next,

then!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

Then we tell it to give us the next.

An object… for iterating?

A!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

Then it moves, preparing for another question.

An object… for iterating?

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

An object… for iterating?

We ask the ant if it can continue.

Do you have
a next now?

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

An object… for iterating?

We ask the ant if it can continue.

Yup!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

Then we tell it to give us the next.

An object… for iterating?

All right then,
give me another

next!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

Then we tell it to give us the next.

An object… for iterating?

B!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter = arr.iterator();
 while (iter.hasNext()) {
 char item = iter.next();
 }

Then it moves, preparing for another question.

An object… for iterating?

When we ask the ant to give us next…

It tells us what it’s currently on, and then it moves
forward to prepare for the next question.

It doesn’t move forward, and then tell us what it
arrives at

Notice!!

 Array arr = new Array(‘a','b','c','d','e','f','g');
 arr.initIteration();
 while (arr.hasNext()) {
 char item = arr.next();
 }

Why do we need another object?

Why not put iteration methods directly in the
array class?

We can put down multiple iterators!

Each one acts independently.

 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter1 = arr.iterator();
 iter1.next();
 iter1.next();
 Iterator iter2 = arr.iterator();

An object for iterating!

We can define different types of iterators
 Array arr = new Array(‘a','b','c','d','e','f','g');
 Iterator iter1 = arr.skipFIterator();
 Iterator iter2 = arr.oddIterator();

An object for iterating!

I’ll skip f if I
see one. I only return letters at odd indices!

I don’t even start at index 0…

Questions?

You know what’s coming, right?

Quiz!

I’d like to introduce a class I made called Vector
(not Java’s Vector). It represents a vector from
linear algebra (basically an array of numbers)

Vector v = new Vector(3, 4, 2, 5);

v represents
this vector

Quiz!

Vector has exactly one public
method, .iterator(), which returns a new
iterator over the values in the vector.

Quiz!

Briefly ponder how you could
use .iterator() to compute the dot
product of two vectors.

Dot product

To compute the dot product of two vectors,
multiply corresponding entries of the vectors,
then sum the results

Quiz!

The quiz isn’t as simple as just computing dot
products, however.

Next, I’d like to introduce a concept known
as a sparse vector.

Commonly, while data processing, we have
vectors with lots of zeroes…

Quiz!

A sparse vector.

Lots of zeroes.

Quiz!

A sparse vector can be represented more
efficiently using two other vectors.

One vector records the indices at which
the sparse vector is non-zero.

The other vector records the values at
those positions.

Quiz!

This vector can be represented by the following two:

Indices where non-zero Values at those indices

We express the same information
using 4 numbers instead of 9!

Quiz!

Your task: Compute the dot product of one normal
vector, and one sparse vector.

Remember: all you have is a .iterator()
method.

 public static int dot(Vector x, Vector
yIndices, Vector yValues) {
 // your code here!
 }

There were lots of solutions to this problem.
Here’s one.

A solution

 public static int dot(Vector x, Vector yIndices, Vector yValues) {
 int sum = 0;
 Iterator<Integer> yIndicesIter = yIndices.iterator();
 Iterator<Integer> yValuesIter = yValues.iterator();
 Iterator<Integer> xIter = x.iterator();
 int xIndex = 0;
 while (yIndicesIter.hasNext()) {
 int yIndex = yIndicesIter.next();
 int yValue = yValuesIter.next();
 int xValue = xIter.next();
 xIndex++;
 while (xIndex <= yIndex) {
 xValue = xIter.next();
 xIndex++;
 }
 sum += yValue * xValue;
 }
 return sum;
 }

Another proposal…
 public static int dot(Vector x, Vector
yIndices, Vector yValues) {
 int sum = 0;
 Iterator xIter = x.iterator();
 Iterator yIter = sparseIterator(yIndices,
yValues);

 while (xIter.hasNext()) {
 int xVal = xIter.next();
 int yVal = yIter.next();
 sum += xVal * yVal;
 }
 return sum;
 }

create a new kind of
iterator that iterates over
the sparse vector as if it

were a normal vector

So how do we write an iterator, anyway?

You’ll see in lab.

Iterator properties

calling next a bunch of times will return
each item in the collection exactly once

for some iterators, this is guaranteed to be in
a certain order. For others, it’s not

Iterator properties (cont.)

iterating over a collection will not modify the
collection in any way

an iteration is not guaranteed to work
correctly if the collection is modified while
the iteration is taking place

Iterator properties (cont.)

Ex: The following code is not guaranteed to
work, because the list is being modified
during the iteration
 List l = new ArrayList();
 // put stuff in l
 Iterator iter = l.iterator();
 while (iter.hasNext()) {
 int x = iter.next();
 l.add(2);
 }

add a 2 to the end of the list

Iterator properties (cont.)

calling hasNext will not change anything.
Whether you call hasNext once or multiple
times in a row, the iteration should not
change

next should not rely on hasNext being
called in order to work

next may crash if called too many times

