
Debugging, Big O, Lists
Quote of the week: “If we are indeed in as bad a state as I take us to
be, pessimism will turn out to be one more cultural luxury that we
shall have to dispense with in order to survive in these hard times.”

You have an exam coming up

Friday, 7 - 9pm

Sections 101 - 103: Go to 145 Dwinelle

Sections 104 - 109: Go to 155 Dwinelle

It will cover all the labs, readings, and lectures that happen
before it

With the exception of runtime analysis. No runtime
analysis will be on the exam

You can bring a one-sided 8.5” x 11” cheat sheet

Did you enjoy project 1?

Debugging it may have been frustrating.

I’d like to explicitly go over techniques for
debugging.

Why not, right?

How code can be broken

1. Your code won’t even compile — Easiest to
debug

2. Your code compiles, but crashes at runtime
(throws an exception) — Medium to debug

3. Your code runs, but returns the wrong
answer — Hardest to debug

1. Your code won’t compile

Solution: Hover over the red underline in
Eclipse, and it will tell you exactly what’s
wrong, often with suggested fixes

If you don’t know what the error message
means, look it up

1. Your code won’t compile

Coding recommendation: Always make sure
that your code correctly compiles

If you write a line and it generates a compile-
time error, don’t move on until you fix the line

If you treat compile-time errors as soon as
they occur, they should never be a major
contributor of debugging time

2. Your code crashes at runtime

Java gives you the name of the Exception, as
well as a stack trace

First, ensure you know what the Exception
means. If you don’t, look it up

Next, follow the stack trace until you find the
problematic line, and fix it

Example: a stack trace
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2

at WordCounter.indexOf(WordCounter.java:51)
at WordCounter.getCounts(WordCounter.java:40)
at WordCounter.main(WordCounter.java:82)

What does this mean?

An ArrayIndexOutOfBoundsException occurred. Where?

Inside the indexOf method, at line 51

At the time of error, indexOf was being called from the getCounts
method, line 40

And at the time of error, getCounts was being called from main, at
line 82

Example:
NullPointerException

Everyone’s favorite error is the
NullPointerException

A NullPointerException means one
thing, and one thing only

We have a null expression that we are trying
to call a method or get an instance variable
from

Spot the
NullPointerException

Suppose a stack trace tells us we got a null pointer
exception on this line

Which of the following could be the null that caused the
exception?

if (this.pangolin().wug() == capybara) {

A. this
B. the return of this.pangolin()
C. the return of this.pangolin().wug()
D. capybara
E. some variable inside pangolin() or wug()

3. Your code runs, but returns the
wrong answer

This is by far the hardest to debug, because
you have no indication where the error occurs.

In the previous two cases, Java tells you
exactly where the problem was. Resolving
these is simply a matter of knowing what the
error means

3. Your code runs, but returns the
wrong answer

The first step: Search your code for where the
bug occurs

Search, huh?

You’re searching for a bug in your code.

Do you know any good ways of searching?

How about, well, binary search?

Binary search?

I thought this was used for checking if a sorted
array contained a particular number.

Well yes. But a similar idea applies for
looking for bugs.

Really?

Yes. Maybe an example will clarify.

Binary search demo

Runtime analysis

We’re interested in knowing how fast our
code is

How to figure out? Timing? But it may run
with different speeds on different computers,
under different amounts of traffic, etc.

Runtime analysis

The big idea: Let’s count the number of
statements our program has to execute

This will (roughly) approximate the runtime

NOT the full story (see 61C, future classes).
But it’s a start

Some observations

Observation 1: The number of statements our
program has to execute varies based on the
size of the input

public static double min(double[] arr) {
 double minSoFar = Double.POSITIVE_INFINITY;
 for (double item : arr) {
 if (item < minSoFar) {
 minSoFar = item;
 }
 }
 return minSoFar;
}

Takes longer depending on
how many items arr has in it!

So, runtime is a function of the input size

N
um

er
 o

f s
ta

te
m

en
ts

0
2
4
6
8

10
12
14
16
18

Length of input array

0 1 2 3 4 5

Graph of the function
statements(length) = 3 * length + 2

Some observations

Observation 2: It doesn’t matter how fast our
program runs for small input

The only reason computer science is useful is

to solve large problems

We could have just solved it by hand, otherwise…

Which one is algorithm is better?

Remember, more statements is worse
N

um
er

 o
f s

ta
te

m
en

ts

0

2

4

6

8

10

12

14

16

n

0 1 2 3

f(n) = 5*n f(n) = n^2

Trick question!

Remember, what matters is what happens when n is BIG
N

um
er

 o
f s

ta
te

m
en

ts

0

10

20

30

40

50

60

70

n

0 1 2 3 4 5 6 7 8

f(n) = 5*n f(n) = n^2

Some observations

Observation 3: It’s kind of annoying to count every single
statement in the program

Do I really have to count the first line? It barely takes any
time at all. Where the real work is done is in the loop

It’d be better to approximate the number of statements

public static double min(double[] arr) {
 double minSoFar = Double.POSITIVE_INFINITY;
 for (double item : arr) {
 if (item < minSoFar) {
 minSoFar = item;
 }
 }
 return minSoFar;
}

Some observations

Observation 1: Runtime is a function of the
input size

Observation 2: What matters is how this
function behaves when input gets really big

Observation 3: We don’t need an exact
function. Only an approximate function

Our solution: Big Ɵ notation

Say you have a function called g(n). Probably
represents the runtime of a program based on
the input size, n

We have a notation Ɵ(g(n))

This thing is a set of functions that grow
similarly to g(n)

Our solution: Big Ɵ notation

Suppose in reality, the runtime of our program can
be represented by f(n) = 2n + 3

We might claim this grows similarly to the simpler
function, g(n) = n

The notation to claim this is

f(n) is in Ɵ(g(n))

2n + 3 is in Ɵ(n)

The big picture

We have a program like

And we’ll say, the runtime of this program is in Ɵ(n)

This expresses the approximate behavior of the program as
the input grows large, which is what we really care about

public static double min(double[] arr) {
 double minSoFar = Double.POSITIVE_INFINITY;
 for (double item : arr) {
 if (item < minSoFar) {
 minSoFar = item;
 }
 }
 return minSoFar;
}

Some formalism

So what does it really mean to claim that
some f(n) is in Ɵ(g(n))?

I said g(n) is an approximation of f(n). But
what is the exact nature of the
approximation?

First: the approximation only holds when n is
large

f(n) is in Ɵ(g(n)) if and only if

The limit of f(n) and g(n) as n goes to infinity
is similar, or…

Where c is a positive constant

lim
n!1

f(n)

g(n)
= c

Some formalism

2n + 3 is NOT in Ɵ(n2) because

And 0 is not a positive constant. The point is
that 2n+ 3 is NOT similar to n2. n2 is much
bigger as n gets big

What’s the alternative?

lim
n!1

2n+ 3

n2
= 0

Similarly, n2 is NOT in Ɵ(2n + 3) because

So the limit does not equal a positive
constant. The point is that 2n+ 3 is NOT
similar to n2. n2 is much bigger as n gets big

What’s the alternative?

lim
n!1

n2

2n+ 3
! 1

You can always check big Ɵ membership
using limits

Luckily, there are a couple of shortcuts we
notice

Shortcuts

Shortcut 1: Constant multiplied factors don’t
matter at all.

Ex: 100000*n is in Ɵ(n)

Shortcut 2: When you have a sum of terms,
only the term with the highest power matters

Ex: n5 + n3 + n + 1 is in Ɵ(n5)

Shortcuts

Only the high term matters…

A function with n2 will always overtake a function with
only n

N
um

er
 o

f s
ta

te
m

en
ts

0

10

20

30

40

50

60

70

n

0 1 2 3 4 5 6 7 8

f(n) = 5*n f(n) = n^2

Only the high term matters…

A function with n2 will always overtake a function with
only n

N
um

er
 o

f s
ta

te
m

en
ts

0

10

20

30

40

50

60

70

n

0 1 2 3 4 5 6 7 8

f(n) = 7*n f(n) = n^2

There are other kinds of terms than
polynomials that matter. Here are some
common ones:

Logs: log(n)

Exponentials: 2n, 3n, 4n, …

Factorials: n!

Shortcuts

Logs are always smaller than polynomials

Polynomials are always smaller than
exponentials

So 2n + n10000 + 10log(n) is in Ɵ(2n)

Shortcuts

Multiplying non-constant terms does make a
difference

2n * n10000 + n is NOT in Ɵ(2n)

It’s in Ɵ(2n *n10000)

When in doubt, check by taking limits

Shortcuts

Algorithms that run in…

Ɵ(1) are called constant time algorithms

Ɵ(n) are called linear algorithms

Ɵ(n2) are called quadratic algorithms

Ɵ(log(n)) are called logarithmic algorithms

Ɵ(2n), Ɵ(3n), etc. are called exponential algorithms

By the way

You’re really saying that if one program has
to execute n statements, and another has to
execute 2n statements, they’re roughly the
same?

Even though one runs twice as fast the other
other?

Yes, that’s what I’m saying!

I’m not so sure about this Big Ɵ
thing…

It’s true that constant factors do matter. If you can
cut your program’s runtime by 2, good for you!

But it really doesn’t matter quite as much as other
orders

n and 2n might be the difference between waiting
1 second and 2 seconds. But n and n2 could be the
difference between waiting 1 second and 1 hour,
or worse

I’m not so sure about this Big Ɵ
thing…

In other words…

Constant factors can make the difference
between a fast and slow program

But different Ɵ orders can make the
difference between runnable and completely
un-runnable

I’m not so sure about this Big Ɵ
thing…

n and n2 demo

A brief demonstration

f(n) is in Ɵ(g(n)) if it grows similarly to g(n)

f(n) is in O(g(n)) if it grows similarly to g(n), or
grows more slowly

We say g(n) is an upper bound on f(n)

f(n) is in !(g(n)) if it grows similarly to g(n), or
grows faster

We say g(n) is a lower bound on f(n)

Big O and Big !

If f(n) grows more slowly than g(n), that
means f(n) represents a faster program!

Potentially confusing point

“O” is for Order of growth

So you might hear this term as well

Oh, and why “O”?

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

BREAK!!!
Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Break!

Let’s play a game

Guess the runtime from the code!

 public static void awesomeMethod(int[] arr) {

 int n = arr.length;

 for (int i = 0; i < n; i++) {
 System.out.println(arr[i]);
 for (int j = 0; j < n; j++) {
 System.out.println(arr[j]);
 }
 }
 } Options:

A. O(n)
B. O(2n)
C. O(n2)
D. None of

the above

 public static void wayCoolMethod(int[] arr) {

 int n = arr.length;

 for (int i = 0; i < n; i++) {
 System.out.println(arr[i]);
 }

 for (int j = 0; j < n; j++) {
 System.out.println(arr[j]);
 }
 } Options:

A. O(n)
B. O(2n)
C. O(n2)
D. None of

the above

 public static void outrageousMethod(int[] arr1,
int[] arr2) {

 int n = arr1.length;
 int m = arr2.length;

 for (int i = 0; i < n; i++) {
 System.out.println(arr1[i]);
 for (int j = 0; j < n; j++) {
 System.out.println(arr1[j]);
 }
 }

 for (int k = 0; k < m; k++) {
 System.out.println(arr2[k]);
 }
 }

Options:
A. O(n2)
B. O(n2 + m)
C. O(n2*m)
D. None of

the above

 public static void groovyMethod(int[] arr1,
int[] arr2) {

 int n = arr1.length;
int m = arr2.length;

 if (arr1 != arr2) {
 for (int i = 0; i < n; i++) {
 System.out.println(arr1[n]);
 }
 } else {
 System.out.println("Aren't you special?");
 }
 } Ɵptions:

A. Ɵ(n)
B. Ɵ(n + m)
C. Ɵ(n2 + m)
D. None of the above

Lists

We’d like a data structure to represent
sequential data

The array worked kinda

The problem was its fixed size. We fixed this
with our ResizableIntSequence class,
but…

Inserting into an array

Here’s an array that might be a part of an
IntList. What if we want to append an item
to the front? Say we want to put 8 in front.

2 7 1 2

Inserting into an array— a sad
story

First, move everything over to make room…

2 7 1 2

Inserting into an array— a sad
story

First, move everything over to make room…

2 7 1 2 2

Inserting into an array— a sad
story

First, move everything over to make room…

2 7 1 1 2

Inserting into an array— a sad
story

First, move everything over to make room…

2 7 7 1 2

Inserting into an array— a sad
story

First, move everything over to make room…

2 2 7 1 2

Inserting into an array— a sad
story

Phew! Finally, put the new item in the first
position

8 2 7 1 2

Inserting into an array — a sad
story

To insert in the front, we have to move every
single other item in the array

Inserting a single item into a sequence of
length n takes worst case O(n) time.

This seems more trouble than it should be.

We only wanted to add one item!

Introducing the linked list

An alternative way to represent sequential
data is using a node-based list, aka a linked list

Each item in the list is stored in a little object,
called a node

This node also contains a reference to the next
item in the list

Introducing the linked list

Here’s a picture of the a similar sequence

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

Remember IntSequence?

With IntSequence, the array was just a private
instance variable inside the IntSequence class

Then we could add other methods to the
IntSequence class to do fancy things to that
array

Same with the linked list. The nodes will just
be the instance variables of another class

IntSequence and array

myValues

IntSequence

8 2 7 1 2

List and ListNode class

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

myHead

List

ListNode ListNode ListNode

Inserting into a linked list

Inserting into the front of a linked list is easy!
O(1) time.

Just reassign myHead to a new ListNode

 public void insertFront(int item) {
 ListNode oldHead = myHead;

myHead = new ListNode(item, oldHead);
 }

List and ListNode class

The List class only contains a reference to the
first node in the list.

This is sufficient to iterate through all nodes,
since all nodes can be found from the first
one

Iterating through a linked list

In 61A, you may have processed these using
recursion

In 61BL, we introduce an iterative style

Iterating through a linked list

public void printAll() {
 ListNode currentNode = myHead;
 while (currentNode != null) {
 System.out.println(currentNode.myItem);
 currentNode = currentNode.myNext;
 }
 }

This method is in the List class, not the ListNode
class
It starts at the first node in the list, then prints out
the items one-by-one

Iterating through a linked list

public void printAll() {
 ListNode currentNode = myHead;
 while (currentNode != null) {
 System.out.println(currentNode.myItem);
 currentNode = currentNode.myNext;
 }
 }

This method is in the List class, not the ListNode
class
It starts at the first node in the list, then prints out
the items one-by-one

List and ListNode class

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

myHead

List

ListNode ListNode ListNode

currentNode

public void printAll() {
 ListNode currentNode = myHead;
 while (currentNode != null) {
 System.out.println(currentNode.myItem);
 currentNode = currentNode.myNext;
 }
 }

Iterating through a linked list
This method is in the List class, not the ListNode
class
It starts at the first node in the list, then prints out
the items one-by-one

List and ListNode class

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

myHead

List

ListNode ListNode ListNode

currentNode

Prints 2

public void printAll() {
 ListNode currentNode = myHead;
 while (currentNode != null) {
 System.out.println(currentNode.myItem);
 currentNode = currentNode.myNext;
 }
 }

Iterating through a linked list
This method is in the List class, not the ListNode
class
It starts at the first node in the list, then prints out
the items one-by-one

List and ListNode class

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

myHead

List

ListNode ListNode ListNode

currentNode

public void printAll() {
 ListNode currentNode = myHead;
 while (currentNode != null) {
 System.out.println(currentNode.myItem);
 currentNode = currentNode.myNext;
 }
 }

Iterating through a linked list
This method is in the List class, not the ListNode
class
It starts at the first node in the list, then prints out
the items one-by-one

List and ListNode class

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

myHead

List

ListNode ListNode ListNode

currentNode

Prints 7

Iterating through a linked list

What is this…?!

You may have seen this before

We introduced it during the first quiz!

Speaking of quizzes

The ultimate showdown!! Linked list vs. arrays!!

Who is the better data structure for representing a sequence?

For each of the following, write the runtime of completing
the operation for both linked lists and arrays

Use Big O notation! If you need to distinguish best-case
and worst-case times, please do so

Fyi, indexing into an array takes O(1) time, regardless where
in the array

One more thing

2
myItem myNext

7
myItem myNext

1
myItem myNext

null

myHead

List

ListNode ListNode ListNode

myTail The List class contains
a reference to its last

element, too

Linked lists vs. arrays!

A. Append an item to the end of the sequence

B. Append a sequence of length n to the end of another
sequence of length m

C. Return the kth item of a sequence of length n

D. Append k items to the end of a sequence, in a row.
Assume the sequence starts with 0 items

E. Remove the kth item from a sequence with n elements

Solutions

A. Append an item to the end of the sequence of length n
linked: O(1), array: O(1) best, O(n) worst

B. Append a sequence of length n to the end of another
sequence of length m

C. Return the kth item of a sequence of length n

D. Append k items to the end of a sequence, in a row.
Assume the sequence starts with 0 items

E. Remove the kth item from a sequence with n elements

Solutions

A. Append an item to the end of the sequence of length n linked:
O(1), array: O(1) best, O(n) worst

B. Append a sequence of length n to the end of another sequence
of length m linked: O(1), array: best O(n), worst O(m + n)

C. Return the kth item of a sequence of length n

D. Append k items to the end of a sequence, in a row. Assume the
sequence starts with 0 items

E. Remove the kth item from a sequence with n elements

Solutions

A. Append an item to the end of the sequence of length n linked:
O(1), array: O(1) best, O(n) worst

B. Append a sequence of length n to the end of another sequence
of length m linked: O(1), array: best O(n), worst O(m + n)

C. Return the kth item of a sequence of length n linked: O(k),
array: O(1)

D. Append k items to the end of a sequence, in a row. Assume the
sequence starts with 0 items

E. Remove the kth item from a sequence with n elements

Solutions

A. Append an item to the end of the sequence of length n linked:
O(1), array: O(1) best, O(n) worst

B. Append a sequence of length n to the end of another sequence of
length m linked: O(1), array: best O(n), worst O(m + n)

C. Return the kth item of a sequence of length n linked: O(k), array:
O(1)

D. Append k items to the end of a sequence, in a row. Assume the
sequence starts with 0 items linked: O(k), array: O(k) — really??

E. Remove the kth item from a sequence with n elements

Solutions

A. Append an item to the end of the sequence of length n linked:
O(1), array: O(1) best, O(n) worst

B. Append a sequence of length n to the end of another sequence of
length m linked: O(1), array: best O(n), worst O(m + n)

C. Return the kth item of a sequence of length n linked: O(k), array:
O(1)

D. Append k items to the end of a sequence, in a row. Assume the
sequence starts with 0 items linked: O(k), array: O(k) — really??

E. Remove the kth item from a sequence with n elements linked:
O(k), array: O(n - k)

The score board

A. Append an item to the end of the sequence Depends

B. Append a sequence of length n to the end of another
sequence of length m Linked list

C. Return the kth item of a sequence of length n Array

D. Append k items to the end of a sequence, in a row.
Assume the sequence starts with 0 items Tie

E. Remove the kth item from a sequence with n elements
Depends

Sooo… linked lists…

You’re not really impressing me right now

Linked lists are useful in specific cases

We’ll see examples later

But your default choice should probably be
an array (ArrayList)

