
ADTs, Hashing, Gitlet Intro
Quote of the week: “More than cleverness, we

need kindness and gentleness.”

ADTs

Abstract Data Types, or ADTs, are purely
theoretical descriptions of data structures

Described only in terms of behavior and the
operations they support

We’ve learned a lot about lists…

We learned two implementations of the list,
one with linked nodes and one with arrays

We know that lists exist in different
programming languages (Python, Java, …)

The idea of the list remains constant
throughout

The list (sequence)

The List ADT supports (roughly) the
following operations:

Create an empty list

Add an item to the front or back, or at a
numbered location

Get an item from a numbered location

The list (sequence)

You can define more complex operations on
lists by combining the operations from before

e.g. You can check if a list contains an item
by getting the item at position 0, 1, 2, 3…
up to size

Rapid-fire ADTs

List

Set

Stack, Queue, Priority Queue

Map

Tree

Graph

The set

Sets typically have the following operations

Create an empty set

Add an item to the set

Check if the set already contains an item

The set

Consequences of this behavior:

Compared to the list, the set is
unordered…

…and does not contain duplicates

The stack

Supports the following
operations:

Create an empty stack

Add an item to the stack

Check the most recent item
added to the stack

Remove the most recent item
added

http://www.clipartpanda.com/categories/stack-of-books-clipart

http://www.clipartpanda.com/categories/stack-of-books-clipart

The queue

Supports the following
operations:

Create an empty queue

Add an item to the queue

Check the oldest item
added to the queue

Remove the oldest item
added

Opposite of a stack!

http://cdn2.benzinga.com/files/imagecache/1024x768xUP/
images/story/2012/shutterstock_85396711_0.jpg

http://cdn2.benzinga.com/files/imagecache/1024x768xUP/images/story/2012/shutterstock_85396711_0.jpg

The priority queue

Supports the following
operations:

Create an empty queue

Add an item to the queue

Check the most important item
added to the queue

Remove the most important
item added

What does this mean? This
is one of the more

complicated ADTs. We’ll
save this one for later.

Everyone’s favorite priority queue http://
clog.dailycal.org/tag/tele-bears-oracle/

http://clog.dailycal.org/tag/tele-bears-oracle/

The map

aka a Dictionary or Lookup Table

Supports the following operations:

Create an empty map

Add a key with a value to the map

Lookup the value of a given key

Change the value of a key in the
map

Map of animals to whether they sleep or not. From: https://
askabiologist.asu.edu/plosable/who-needs-sleep-anyway

https://askabiologist.asu.edu/plosable/who-needs-sleep-anyway

The tree

Organizes data hierarchically

Supports the following
operations

Create a tree with a root
node

Add a child to a node

Get all the children of a node

https://www.cs.colostate.edu/~cs155/Fall15/Lecture1

The graph

Supports the following
operations

Create an empty graph

Add a vertex to the graph

Add an edge (connection)
between two vertices

Get all the neighbors of a
vertex

http://mathematica.stackexchange.com/questions/11673/how-
to-play-with-facebook-data-inside-mathematica

http://mathematica.stackexchange.com/questions/11673/how-to-play-with-facebook-data-inside-mathematica

Utility operations

There’s flexibility in the kinds of operations
each ADT could have

Most would be typically assumed to be able to

Check how many items it has

Remove an item

Iterate through each item

ADTs — what’s the point?

You can think about how to solve problem
purely using ADTs

The implementation details might not be a
big deal

Example problem

Given a string with parentheses in it, e.g.
“(((()()))())”, describe an algorithm
that determines if they are correctly balanced

“(()())” is correctly balanced

“(()(“ is not

Example problem

Solution: Every time we see “(“, we are descending a
level into the expression. Every time we see “)”, we
are ascending back a level

To be balanced, we must start and end at level 0, and
never hit 0 otherwise

We can use a stack. When we find “(“, add an item on
the stack. When we find “)”, take an item off the stack.
If the stack becomes empty at the end of the expression,
and not before, we succeed

The point

I can describe the solution to the previous
problem purely theoretically

Now that you know this, you could easily
write it in Java, Python, etc., using a stack in
that language

Fun with ADTs

Quiz time!

(So early??)

Fun with ADTs

Imagine you have a class Stack, with a constructor
the following methods

void push(int item) — adds an item to the
stack

int pop() — removes and returns the most
recently pushed item

boolean isEmpty() — checks if it has any
items

Fun with ADTs

Your task is to write a class Queue, with a
constructor the following methods

void enqueue(int item) — adds an item to
the queue

int dequeue() — removes and returns the
oldest enqueued item

With the following caveat: The class can only use
two types of variables: int, and Stack.

One solution

(Not the most
efficient solution)

import java.util.Stack;
public class Queue {

 private Stack<Integer> myItems;

 public Queue() {
 myItems = new Stack<>();
 }

 public void enqueue(int i) {
 myItems.push(i);
 }

 public int dequeue() {
 Stack<Integer> tempStack = new Stack<>();
 while (!myItems.isEmpty()) {
 tempStack.push(myItems.pop());
 }
 int results = tempStack.pop();
 while (!tempStack.isEmpty()) {
 myItems.push(tempStack.pop());
 }
 return results;
 }
}

Food for thought…

Can this quiz be done using only one stack?

Answer might be more interesting than you
think…

ADTs in Java

Are commonly represented as interfaces

Interface specifies only behavior, not
implementation

e.g. List is an interface, ArrayList and
LinkedList are implementations!

Let’s make a map!

A map is essentially just a set of key-value
pairs…

Let’s make a set!

First idea: Use an array, or ArrayList, or
LinkedList

Let’s make a set!

Create an empty set: myValues = new
ArrayList<E>();

Add an item to the set: myValues.add(E
item);

Check if the set already contains an item:
iterate through the myValues until we find the
item

Runtimes?

Create an empty set: new ArrayList<E>();
O(1)

Add an item to the set: add(E item); O(1)
usually

Check if the set already contains an item: iterate
through the list until we find the item
O(location of item), or O(n) if not in set,
if set has n items

This is really bad

We have to iterate through the ArrayList just
to check if the set contains one item

And every time we want to check if the set
does not contain an item, we have to iterate
through the whole thing!

Goal:

O(1) runtime for checking if the set contains
an item

Can it be done…?!

(drumroll…!)

Goal: O(1) contains

You already did this in lab.

Remember this thing?

This is not a set of booleans

It’s a set of integers!

The things the set contains are actually the indices of this
array

The set of integers

Create an empty set: make a new array of
some big size named contains

Add an integer item to the set:
contains[item] = true;

Check if the set already contains an item:
return contains[item];

Runtimes?

Create an empty set: make a new array of
some big size Eh, not really important

Add an item to the set: contains[item] =
true; O(1)

Check if the set already contains an item:
return contains[item]; O(1)!!

But there’s a problem

How do we make a set of something other
than integers?

Ex: How do we make a set of strings?

This doesn’t really make sense

Is this a set containing “kindness”, “gentleness”,
but not “cleverness” or “machinery”?

Can’t index into an array at a String…

T F F T
“kindness” “cleverness” “machinery” “gentleness”

Idea:

Associate each String with a number

“a” will be 0, “b” will be 1, “c” will be 2,
“gentleness” will be something really,
really big…

Well, at least it works?

This a set containing “a”, “c”, and
“gentleness”, but not “b” or anything else

Assume the number of “gentleness” is 1027

T F T F T… …

0 1 2 3 1027

F
1028

Well, at least it works?

Create an empty set: make a new array of
some REALLY big size

Add a String item to the set:
contains[item.getNumber()] = true;

Check if the set already contains an item:
return contains[item.getNumber()];

Runtimes?

Create an empty set: make a new array of some
REALLY big size Uh, is this a problem now?

Add a String item to the set:
contains[item.getNumber()] = true; O(1),
assuming we can figure out the number of a String in
constant time

Check if the set already contains an item: return
contains[item.getNumber()]; O(1), assuming as
above

Actual problem

Create an empty set: make a new array of
some REALLY big size

We can’t possibly make an array big enough
to hold every possible String!

We have to store a false value for every
single possible String that’s not in our set!

New idea:

Create an array of some fixed, medium size

Mod the number of our String by the size of
the array, and store at that location

Think about it: (the result of x % n is
guaranteed to be < n)

Mod in action

Say the number of “gentleness” is 1027.

1027 % 4 = 3, so we check position 3

Pretty cool, right? We can still predict the index the
String would appear at, allowing us to check in
constant time.

T F F T
0 1 2 3

It kinda works?

Create an empty set: make a new array
contains of some moderate size

Add a String item to the set:
contains[item.getNumber() %
contains.length] = true;

Check if the set already contains an item:
return contains[item.getNumber() %
contains.length];

Problem

(More problems?!)

Problem

Even if all Strings have a unique number,
those numbers modded could end up the
same…

This is called a collision

Problem: Collisions

This is a set that contains “kindness” and “gentleness”

Does it contain “d”?

If the number of “d” is 3, then 3 % 4 = 3, so it looks like it
does!

But it's not supposed to…

T F F T
0 1 2 3

Idea:

Store the actual String instead of just true.
Consider null be to false.

Problem: Collisions

This is a set that contains “kindness” and “gentleness”

Does it contain “d”?

Now we can tell it doesn’t!

0 1 2 3

“kindness” null null “gentleness”

It kinda works?

Create an empty set: make a new array
contains of some moderate size

Add a String item to the set:
contains[item.getNumber() %
contains.length] = item;

Check if the set already contains an item:
return contains[item.getNumber() %
contains.length].equals(item);

Problem

Well, what if we wanted to store both
“gentleness” and “d”?

Idea

Store multiple things by… storing a list

Problem: Collisions

This is a set that contains “kindness”,
“gentleness”, and “d”

0 1 2 3

null null

“gentleness” “d”

null

“kindness”

null

It works!!!

Create an empty set: make a new array
contains of some moderate big size

Add a String item to the set:
contains[item.getNumber() %
contains.length].add(item);

Check if the set already contains an item:
return contains[item.getNumber() %
contains.length].contains(item);

This is the
contains method
of the LinkedList

class. Not the
name of our array.

Problem

Check if the set already contains an item:
return contains[item.getNumber() %
contains.length].contains(item);

Runtime of this is…
proportional to the number

of things in the list?! We lost O(1)…

But I’m all out of ideas

Runtime is NOT guaranteed O(1)

Instead, it depends on the number of
collisions

Luckily, the number of collisions should
much smaller than the total number of items
in the set

Collisions

Can reduce number of collisions by making
the array bigger

But we might not have the amount of
memory for it.

Idea: Expand the array if the number of
collisions gets too high

The hash table

This thing we just invented is called a hash table

Key feature: supports nearly O(1) contains
checking by associating each thing in it with a
special number called a hash code

The .getNumber() method of String is actually
called a hash function. In Java, the real method
is .hashCode()

Story of a beautiful partnership

Last lecture, we witnessed a great battle between
arrays and linked lists, to decide which was better
for a sequence

A hash table turns out to be an array of linked lists.

The array gives us fast indexing, and the linked lists
gives us guaranteed fast appends

It turns out the best thing was when the array and
linked list worked together!

The hash table in Java

Set set = new HashSet();

set.add(“noodles”);

set.add(“macaroons”);

System.out.println(set.contains(“no
odles”)); // true!

An interface (ADT)

The actual class
(implementation)

Let’s talk about .hashCode()

I told you String has .hashCode() method,
which returns a unique number for the String

It’s not truly unique, but pretty close

How do we write this?

Simple String .hashCode()

Goal: Associate a number with a String

Luckily, each char already has a number
associated with it. We could use that.

 public int hashCode() {
 int hash = 0;
 for (int i = 0; i < s.length(); i++) {
 hash += s.charAt(i);
 }
 return hash;
 }

Actual String .hashCode()

Or, closer to it anyway

Why so complicated? Turns out it reduces
collisions. Don’t worry about this. More of a CS 70
topic

 public int hashCode() {
 int hash = 0;
 for (int i = 0; i < s.length(); i++) {
 hash = 31 * hash + s.charAt(i);
 }
 return hash;
 }

Let’s talk about .hashCode()

So our hash table stores Strings

What if we want to store some other kind of
Object?

All it needs is a .hashCode() method.

Let’s talk about .hashCode()

The Object class has a .hashCode() method. So
all objects do!

Object’s .hashCode() is useless. Expected to be
overridden.

Just like .equals and .toString()

Every class you write should have its
own .hashCode() method, its own way of
turning itself into a number

Hash Maps

I just described how to use a hash table to
make a set.

You can also use it to make a map.

Instead of storing items, just store key-value
pairs together

The hash map in Java

Map<String, Integer> map = new
HashMap<String, Integer>();

map.put(“macaroons”, 254);

map.put(“noodles”, 2);

System.out.println(map.get(“macaroo
ns”)); // 254

An interface (ADT)

The actual class
(implementation)

key type value type

Hash tables

Are used everywhere all the time

Probably the most useful non-obvious data
structure in this course

Java’s real hash table is a little fancier than
I’ve shown you, but I got you to the basic
idea

BRE AK

Intro to project 2

In project 2, you’ll be building a simpler
version of the popular version control software,
git

It’s called gitlet

Version control software?

Version control software helps you maintain
different backups of files on your computer

Specifically, you could maintain different
backups of code you write

That way, you can revert to old versions if
you like

Files, huh?

In this project, you’ll be working with your
computer’s file system, which is something you
might not have done before

So I provide a brief intro

Files, huh?

Whenever you run a Java program, you run it
from a certain location in your file system

You can access files only in that folder by
their name…

File System Demo

Files, huh?

To access files in a folder, you have to include
the folder name in front

The complete list of folders and file name is
referred to as the path to the file

Introducing the File class

The File class in Java allows us to easily
manipulate files

File f = new File(“values/deep/
kindness.txt”);

Does NOT create a new file on our
computer. It only gives us a variable that
allows us to manipulate the existing file

Introducing the File class

The File class has a bunch of useful
methods! Explore them on your own.

Backups, huh?

If we’re going to maintain information about
backups on our computer, we need to save
the state of our program

Normally, when you run a Java program, all
objects are garbage collected at the end and
disappear

Backups, huh?

The way to save state on a computer is using
a file

We want some way to save our Java objects
to a file!

Persistent List Demo

Persistent List

How did I do this?

Using the Serializable Interface

Any object that implements Serializable
can be saved to a file, then loaded back in the
next time we run Java

Serializable

So, what methods are required to implement
Serializable?

None.

What.

Serializable

As long as a class and all of its instance
variables implement Serializable, you can
save it to a file

How does this work? Magic. Don’t worry
about it.

