
All About Trees
Quote of the week: “When you get into an argument, ask

yourself if you want to be happy or if you want to be right,
because there are hills you can die on that just aren’t worth

fighting for.”

Project 1 grades…

Hopefully out at the end of the week

Also, we caught a couple of people cheating.
Please confess before the 7th week for a
lighter punishment

Midterm 2

Is coming up in 1.5 weeks

It’s harder than midterm 1

So what’s a tree?

So what’s a tree?

Kinda like a linked list, except each node can
have multiple nexts

0 1 2

0

2

1

…

…

…

…

…

Linked List

Tree

So what is a tree?

Special rule: edges can’t point back up the
tree

a

b c

d e Not a tree!

So what’s a tree?

Special rule: nodes can’t be descended from
multiple nodes

a

b c

d e Also not a tree!

So I noticed Java doesn’t have a
Tree class

Good observation!

That’s because we don’t usually think of a
tree as a container for data

Instead, we use the metaphor that the data
itself is implicitly organized as a tree

Tree examples

In lab, you worked with an amoeba family

Notice that if an AmoebaFamily contains an
Amoeba object, and each Amoeba object
contains references to its kids, then the data is
implicitly organized like a tree

We did not build a Tree<Amoeba>

Tree examples

A file system, where
every folder contains
references to folders and
files inside it, is
implicitly a tree

https://www.cs.colostate.edu/~cs155/Fall15/Lecture1

Tree examples

A mathematical expression is implicitly a tree

((a+ b) ⇤ (c� d)) *

+ -

a b c d

Tree examples

Java code
is a tree!

Eclipse has
library
functions
that can
help you
traverse
it… Credit: http://blog.brunobonacci.com/

http://blog.brunobonacci.com/

Tree examples

NLP researchers hope that human language
can be modeled by a tree…

Credit: http://cdn.ymaservices.com/editorial_service/media/images/000/068/213/
compressed/mGsNb.jpg?1415467331

http://cdn.ymaservices.com/editorial_service/media/images/000/068/213/compressed/mGsNb.jpg?1415467331

Tree examples

Decision-making
processes are
implicitly trees

What should I do today?

Credit: http://study.com/cimages/
multimages/16/decision_tree.gif

http://study.com/cimages/multimages/16/decision_tree.gif

Tree examples

The sequence of possible moves you could
make when playing checkers is implicitly a
tree

(We’ll see this in project 3)

Tree examples

Categorization/typing systems are trees

Credit: http://www.slideshare.net/Andriyanieka12/13-semantics-
synonym-antonym-homonym-hyponym-polyseme-idioms-18509523

http://www.slideshare.net/Andriyanieka12/13-semantics-synonym-antonym-homonym-hyponym-polyseme-idioms-18509523

Trees can be useful as containers for
data…

…but only in the service of another ADT.

For example, we’ll see how we can
implement the Map/Set ADT using a tree
(instead of hashing)

We’ll also implement the Priority Queue
ADT using a tree (next lecture)

Representations

Tree representations

Node-based

Array-based (?!)

Nodes that can variable children

public class File {
 public String myName;
 public int mySize;
 public boolean isFolder;
 public File[] myContainedFiles;
}

Could have different
number of contained files…

Nodes that can variable children

public class File {
 public String myName;
 public int mySize;
 public boolean isFolder;
 public File[] myContainedFiles;
}

T

1

…F

10

…F

5

…F

15

“home/“

Nodes that always have two or
fewer children
public class Expression {
 private String myItem;
 private Expression myLeftOperand;
 private Expression myRightOperand;
 }
} “+“

“4““3“

A tree with an array?!

Is this really a
tree??

public class Tree {
 private Object[] myItems;
}

Tree
myItems

“a” “b” “c” “d” “e”null

A tree with an array?!

The secret:

myItems[0] is always null

myItems[1] is the root

the left child of myItems[i] is at
myItems[2*i]

the right child of myItems[i] is at
myItems[2*i + 1]

A tree with an array?!
“a” “b” “c” “d” “e”null

a

b c

d e

The array represents
this theoretical tree

0 1 2 3 4 5

A tree with an array?!

Why?

Memory efficient if there are no holes in the
middle of the array

A tree with an array?!

Which tree below, if any, wouldn’t have a “hole” in the array?

Can you come up with a general rule?

Tree processing styles

Quiz time!

public class Tree {
 private TreeNode myRoot;

 private int shortestOddPath() {
 // TODO
 }

/** Returns the min of any number of
arguments. */

 private static int min(int... nums)
{…}

 private class TreeNode {
 private int myItem;
 private TreeNode myLeft;
 private TreeNode myRight;
 }
}

Complete
shortestOddPath
The length of the path is
the sum of the myItems of
nodes from root to leaf
Only considers nodes at
odd depths
Find the shortest path
from root to any leaf
Pay attention to null
checks and variable
scope!!

Quiz time!

3

2 100

50 4 1

25

shortestOddPath is 4:
3 —> 1

Other paths are
3 —> 50
3 —> 4

Tree processing styles

The point of this question was actually not
the logic, but the style of your solution

There are roughly three distinct stylistic
approaches

Tree processing styles

You essentially have three choices:

Null checks everywhere

Static helper methods

EmptyTreeNodes

Tree processing styles

You essentially have three choices:

Null checks everywhere

Static helper methods

EmptyTreeNodes

The more complicated your code gets, the more
appealing EmptyTreeNode is. But for simple code,
the former are appropriate

break

Map as a Tree

Maps

Map<String, Integer> h = new
HashMap<String, Integer>();

Before, we implemented a map
using the concept of hashing…

Is there another option?

Introducing the tree map

Map<String, Integer> h = new
HashMap<String, Integer>();

Map<String, Integer> t = new
TreeMap<String, Integer>();

Introducing the tree map

How is the tree map implemented?

Well, a map is basically a set of key-value
pairs, so let’s see how a tree set is
implemented…

Yes, there is a tree set

Set<String> s = new TreeSet<String>();

A tree… is a set?

Remember, the main functionality of a set is
to have an add and contains method (and
remove)

A tree… is a set?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

A set of Strings

A tree… is a set?

How do we check if it contains something?

No option except to search the whole tree

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

First check the root

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

Is this “kindness”?

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

Nope

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

Then check the
children and so on

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

Is this “kindness”?

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

Is this “kindness”?

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love” Is this “kindness”?

Does it contain “kindness”?

“wug”

“bullfrog”“cleverness”

“kindness”

“love” Finally!

DFS

We just performed a depth-first traversal of
the tree

Because we were looking for something, it’s
called depth-first search, or DFS

In general, this is how we check if a tree
contains something (alternatively: BFS)

Runtime?

Check if the set contains something

Use DFS: O(N) worst case, if there are N
nodes in the tree. We just look at each node
one-by-one

This is really bad

A tree seems no better than using a list as a
set

And we already decided hashing was better
than using a list

A hint that we could do better

Here’s a set of teas
tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

A hint that we could do better

Does it contain premium grade matcha?
tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

A hint that we could do better

Does it contain premium grade matcha?

I happen to know that premium grade
matcha is a type of matcha, which is a type of
green tea

A hint that we could do better

tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

Is it premium grade matcha?

A hint that we could do better

tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

Is it premium
grade matcha?

A hint that we could do better

tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

Is it premium
grade matcha?

A hint that we could do better

tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

Is it premium
grade matcha?

A hint that we could do better

tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

Is it premium
grade matcha?

A hint that we could do better

tea

black
white

green

earl
grey prince of

wales silver needle
matcha

sencha

ceremonial
grade

cooking
grade

Conclusion: Not in
the set

The point

We knew we wouldn’t have to check
anywhere down the black branch or the
white branch

We can take advantage of the organizational
structure of the tree to improve search time

Runtime now?

We have to check every node from root to a
leaf, but not every node in the tree

How many nodes are there from root to leaf?

In other words, what is the height of tree?

Say there are N nodes total. How many
nodes does it take to get to the bottom?

About log2N height

What is log?

is the number of times you have to divide
N by B before you get 1

logB(N)

Example

becauselog2(16) = 4

16/2 = 8

8/2 = 4

4/2 = 2

2/2 = 1
} 4 steps

What does this have to do with
trees?
At every level, half the
nodes go on one side,

and half go on the other

We continually divide
our N nodes in half

until only one goes on
each side

Conclusion

Contains in our tree set runs in O(logN)
time, which is significantly less than O(N)

Why didn’t it work here?

“wug”

“bullfrog”“cleverness”

“kindness”

“love”

Why didn’t it work before?

Because the tree was completely
unorganized. They were just random Strings
placed in there

An idea

We can organize arbitrary strings
alphabetically

This strategy will allow us O(logN) contains
time on a set of any strings

The binary search tree

A binary search tree (BST) is a special kind of
tree that organizes strings alphabetically, or
integers by size, etc.

BST version

“wug”

“bullfrog”

“cleverness”

“kindness”

“love”All strings less than
“love” on the left

All strings greater
than “love” on the

right

The binary search tree

A BST is a tree with one more special rule
(invariant)

Consider a TreeNode t. All nodes in the left
subtree of t are less than t. All nodes in the
right subtree of t are greater than t.

This rule holds recursively for all nodes in
the tree

Congratulations

We built a set with O(log N) contains time

Congratulations

We built a set with O(log N) contains time NOT

Actually

We built a set with O(H) contains time, where
H is the height of the tree

Normally H is logN, as we showed, but…

What about this tree?

Technically a tree, but
we don’t divide in half
at each step. Now the

height of the tree is just
N, not logN

Problem

The BST only has good contains time if the
tree is relatively balanced, or close to

Balance

We’ll develop three notions of balance

Completely balanced

Maximally balanced

Almost balanced

These are three technical terms

Completely balanced

Maximally balanced

Every row is filled, except possibly the last,
which is filled left-to-right

This is equivalent to the condition that the
array tree has no holes in it

Maximally balanced

Almost balanced

The heights of two sister subtrees cannot
differ by more than one

Almost balanced

Almost balanced

2 3

Almost balanced

1
0

Almost balanced

1 2

Almost balanced

1
0

Balanced BST

Our BST would have fast contains if only it
supported one more invariant — that it is
balanced in some sense

But, how can we ensure this?

“wug”

“bullfrog”

“cleverness”

“kindness”

“love”

It’s almost balanced

“wug”

“bullfrog”

“cleverness”

“kindness”

“love”

What if we insert “anachronism”?

“wug”

“bullfrog”

“cleverness”

“kindness”

“love”

“anachronism”

3 1

3 1

No longer almost balanced!

Enter the AVL tree

The AVL tree (named for inventors Adelson-
Velsky and Landis) is a BST that is always
almost balanced

How?

After inserting a new item, rearrange the tree to
be more balanced

“wug”

“bullfrog”

“cleverness”

“kindness”

“love”

“anachronism”

If we insert and get this

We will rearrange to get…

“wug”

“bullfrog”

“cleverness”

“kindness”

“love”

“anachronism”

Now almost balanced! And still a BST!

…this!

AVL balance

The specific operation that balances an AVL
tree is called a rotation

Rotation intuition

Imagine a tree is
like a hanging
mobile

Credit: http://www.the-mobile-factory.com/

http://www.the-mobile-factory.com/

Rotation intuition

How would you
balance it?

Credit: http://www.the-mobile-factory.com/

http://www.the-mobile-factory.com/

Rotation intuition

Pinch here, and
pull up!

Credit: http://www.the-mobile-factory.com/

http://www.the-mobile-factory.com/

Rotation intuition

This is roughly
what a rotation
is

Credit: http://www.the-mobile-factory.com/

http://www.the-mobile-factory.com/

Rotate!

e

c f

b d

a

It’s unbalanced!

Pull up on this node

This means its parent
will become its child

Basically this

e

c

f
b

d
a

Basically this

e

c

f
b

d
a

But now c has three children

Basically this

e

c

f
b

d
a

But now c has three children

Luckily, e only has 1,
because c used to be its
child, but isn’t anymore

So actually this

e

c

f
b

da

So actually this

e

c

f
b

da

Notice!!

We
preserved
the BST
ordering
property

Rotations

We just rotated C right… this means C’s
parent becomes its right child

If the tree had been misbalanced the other
way, we might have rotated a node left
instead

Rotations

Wikipedia has a wonderful animation

Rotations

The triangles in the previous animation
indicate subtrees. That is, there could be a lot
more nodes under them

Rotations

Technical definition of rotation: if after
inserting you find that alpha is too tall relative
to beta, then turn B into A’s child, and make
beta a child of B

Rotations

Technical definition of rotation: if after
inserting you find that alpha is too tall
relative to beta, then turn B into A’s child,
and make beta a child of B

There is a mirror-image case, as well

Unfortunately

It’s not quite that simple

(Are you kidding me?!)

Rotations in more detail

I described the process of rotation accurately
to you

However, sometimes a single rotation is not
enough to balance an AVL tree after an
insertion

Sometimes two rotations are needed (but no
more)

Rotations

If alpha was heavier than Beta, we rotated A
right and were done

What if Beta was heavier than alpha?

Rotations

If Beta is heavier than alpha…

 first rotate the root of Beta left. Now root of Beta takes A’s
place

Then rotate the root of Beta right. Now root of Beta is the
highest node

Phew!

So that was rotations, huh?

Runtimes

During a rotation, we only reassign ~6
references, no matter how many nodes in the
tree there are

If we always rebalance as soon as the tree
becomes unbalanced, we only have to do
max of 2 rotations to fix things

This means: fixing balance is O(1) time!!!

Runtimes — AVL tree set

add an item to the set

Traverse down to the correct spot, put the
item: O(logN)

Maybe apply rotations to fix balance O(1)

check if set contains an item

Traverse down to the correct spot: O(logN)

The score board

HashSet:

add: Guaranteed O(1), if fast hashCode

contains: Average O(1), worst-case O(N)

TreeSet:

add: Guaranteed O(logN)

contains: Guaranteed O(logN)

The score board

HashSet generally outdoes TreeSet, and so is
far more common

But, TreeSet does beat HashSet in the worst-
case, if you need to be worried about that

The score board

TreeSet has one other major advantage over
HashSet

In HashSet, items were hashed, or scrambled

In TreeSet, items are organized in sorted order

The score board

In TreeSet, items are organized in sorted order

This means you could also use TreeSet to find
items close to a given item, among other
things

For example, TreeSet has a method higher,
that returns the closest element in the set
higher than an input one

And we’re not done yet!!

Although TreeSet tends to be a worse set than
HashSet…

It’s definitely better than using a LinkedList
as a set (asymptotically)

Remember the HashSet?

An array of linked
lists, right?

And we’re not done yet!!

Since Java 8 (released last year), Java’s
HashMap will use a tree in each bucket
instead of an array, if there are too many
items in the bucket

Cool, right?

One final note

We learned about AVL trees, the first
balanced BST invented

In practice, Java uses something called a red-
black tree, which is similar in concept to AVL
tree, but slightly more complicated

Let’s talk about gitlet

Merge

When we merge, we want to create a new
commit with files from both branches

A.txt

B.txt,
A.txt

C.txt,
A.txt

Merge

When we merge, we want to create a new
commit with files from both branches

A.txt

B.txt,
A.txt

C.txt,
A.txt

Merge!!

Merge

When we merge, we want to create a new
commit with files from both branches

A.txt

B.txt,
A.txt

C.txt,
A.txt

B.txt,
C.txt,
A.txt

Merge

What if we have different versions of A?

A.txt

A’.txt

C.txt,
A.txt

Imagine A’.txt actually
has the same name as

A.txt. The ’ is just
supposed to indicate A is

changed.

Merge

What if we have different versions of A?

A.txt

A’.txt

C.txt,
A.txt

Merge!!

Merge

Which version of A should we keep in the
new commit?

A.txt

A’.txt

C.txt,
A.txt

This A?

Merge

Which version of A should we keep in the
new commit?

A.txt

A’.txt

C.txt,
A.txt

Or this A?

Merge

Ignoring the other branch, we see that A’ is a
strictly newer version than A

A.txt

A’.txt

C.txt,
A.txt

Merge

But this A is the same A

A.txt

A’.txt

C.txt,
A.txt

Merge

Facts:

A’ is newer than A

A is the same as A

A.txt

A’.txt

C.txt,
A.txt

Merge

So when we merge, and we have to decide
whether to keep A’ or A, we should keep A’,
because it’s newer

A.txt

A’.txt

C.txt,
A.txt

Merge

A.txt

A’.txt

C.txt,
A.txt

Merge!!

Merge

A.txt

A’.txt

C.txt,
A.txt

C.txt,
A’.txt

Merge

A.txt

A’.txt

C.txt,
A’’.txt

New scenario
New version of A here

And here

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Which one do we keep now?

Merge!!

Merge

Ignoring the other branch, we see that A’ is a
strictly newer version than A

A.txt

A’.txt

C.txt,
A’’.txt

Merge

Ignoring the other branch, we see A’’ is a
newer version than A

A.txt

A’.txt

C.txt,
A’’.txt

Merge

But A’’ doesn’t know anything about A’. It is
not obviously newer than A’

A.txt

A’.txt

C.txt,
A’’.txt

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Facts:
A’ is newer than A
A’’ is newer than A
No known relationship between A’ and A’’

Merge!!

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Therefore, it’s not clear which of A’ or A’’ we
should keep in the merged commit
So gitlet will let the user decide manually
rather than gitlet deciding automatically

Merge!!

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Merge commit will not
happen temporarily.

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Instead, both A’ and A’’ appear in the
working directory. One has name A.txt, the
other has name A.txt.conflicted

Merge

A.txt

A’.txt

C.txt,
A’’.txt

User decides which one they want, deletes
the other, and makes sure the name of the one
they want is A.txt

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Say user decides they wanted A’.txt. So they
delete A’’.txt, then add A’.txt, then commit.

Merge

A.txt

A’.txt

C.txt,
A’’.txt

Merge complete

C.txt,
A’.txt

Rebase

A.txt

A’.txt

C.txt,
A.txt

Follows almost the exact same logic as merge

Rebase

A.txt

A’.txt

C.txt,
A.txt

Rebase!!

Rebase

A.txt

A’.txt

C.txt,
A.txt

C.txt,
A?.txt

Which A goes here?

Rebase

A.txt

A’.txt

C.txt,
A.txt

C.txt,
A?.txt

Which A goes here?

Facts are the same: A’ is newer than A, and A
is the same as A

Rebase

A.txt

A’.txt

C.txt,
A.txt

C.txt,
A’.txt

Facts are the same: A’ is newer than A, and A is the
same as A

Therefore, keep A’

Rebase

A.txt

A’.txt

C.txt,
A’’.txt

C.txt,
A?.txt

Which A goes here?

Facts: A’ is newer than A, A’’ is newer than A,
A’ and A’’ have no relation

Rebase

A.txt

A’.txt

C.txt,
A’’.txt

C.txt,
A?.txt

Which A goes here?

Conclusion: We should conflict between A’
and A’’

Rebase

A.txt

A’.txt

C.txt,
A’’.txt

C.txt,
A’’.txt

But, in the name of simplicity, just keep A’’

Rebase — weird

A.txt

A’.txt

C.txt,
A.txt

C.txt,
A’’.txt

What if it looks like this before rebase?

Rebase — weird

A.txt

A’.txt

C.txt,
A.txt

C.txt,
A’’.txt

Rebase!!

Rebase — weird

A.txt

A’.txt C.txt,
A?.txt

C.txt,
A?.txt

Which As do we keep?

C.txt,
A.txt

C.txt,
A’’.txt

Rebase — weird

A.txt

A’.txt C.txt,
A?.txt

C.txt,
A?.txt

This would be A,
which is older than A’

C.txt,
A.txt

C.txt,
A’’.txt

This would be A’’,
which has no relation

to A’

Rebase — weird

A.txt

A’.txt C.txt,
A’.txt

C.txt,
A’’.txt

So replace it with A’

C.txt,
A.txt

C.txt,
A’’.txt

So conflict. But in the
name of simplicity,

keep A’’

Traversals
(section of lecture I decided to skip)

Traversal

Depth-first

Pre-order

Post-order

In-order

Breadth-first

Best-first

Let’s get working with trees!

The different tree traversals themselves are a
tree…

Traversal

Depth-first

Pre-order

Post-order

In-order

Breadth-first

Best-first

Better explained
with recursion

Traversal

Depth-first

Pre-order

Post-order

In-order

Breadth-first

Best-first

Better explained
with loops

Pre-order traversal

As you traverse through the tree, process the
parents before the children

Process means do some computation with
the node. Print it out, add it to some total, etc.

Pre-order traversal

public class TreeNode {
Object myItem;
TreeNode myLeft;
TreeNode myRight;

 public void preOrderTraversal() {
 process(this);
 myLeft.preOrderTraversal();
 myRight.preOrderTraversal();
 }

}

Pre-order traversal example

 public void printPreOrder() {
 System.out.println(this.myItem);
 myLeft.printPreOrder();
 myRight.printPreOrder();
 }

Pre-order traversal example

What would it print?

a

b c

d e

Pre-order traversal example

What would it print?

a

b c

d e

a b d e c

Post-order

Process the children before the parent

Post-order traversal

 public void postOrderTraversal() {
 myLeft.postOrderTraversal();
 myRight.postOrderTraversal();

process(this);
 }

Pre-order traversal

 public void preOrderTraversal() {
process(this);

 myLeft.preOrderTraversal();
 myRight.preOrderTraversal();
 }

Post-order traversal example

Compute the total size of a folder
 public int totalSize() {
 int totalSize = 0;
 for (File child : myContainedFiles) {
 totalSize += child.totalSize();
 }
 totalSize += mySize;
 return totalSize;
 }

We finish figuring out the
size of our children…

Before finishing
our own size.

Post-order traversal example

T

1

…F

10

…F

5

…F

15

“home/“

Total size: 10 Total size: 5 Total size: 15

Total size: 41

The total size of the
parent node depends

on the total size of
its children. Post-

order is useful.

In-order traversal

Process left child, then parent, then right
parent

In-order traversal

 public void inOrderTraversal() {
 myLeft.inOrderTraversal();

process(this);
 myRight.inOrderTraversal();
 }

In-order traversal example

Print out the expression

 public String toString() {
 String results = "(";
 if (myLeftOperand != null) {
 results += myLeftOperand.toString();
 }
 results += myItem;
 if (myRightOperand != null) {
 results += myRightOperand.toString();
 }
 return results + ")";
 }

Finish left

Add in this node

Finish right

In-order traversal example

*

+ -

a b c d

Prints ((a+b)*(c-d))

Depth-first traversal to breadth-first
traversal

All the traversal we looked at so far were
depth-first, meaning they went all the way
down a branch before moving onto another
branch

Breadth-first instead explores all the nodes
that are at depth D before going to any at
depth D + 1

Depth first

a

b c

d e

a b d e c

Breadth first

a

b c

d e

a b c d e

Breadth first

a

b c

d e

a b c d e

Breadth first

a

b c

d e

a b c d e

Breadth first

a

b c

d e

a b c d e

Best first

Best first traversal is not a standard term, but
is extremely common

Choose which node to go to next by some
notion of priority

Best first

Example: Go to lower letters alphabetically,
when you have a choice

m

a b

d c

m a b c d

Intuitive tree traversals!

For the tree, write
down the order nodes
would be printed out

Preorder

Postorder

Inorder

Breadth-first

m

a b

d c g

e

break

Try out a traversal yourself…

…with a quiz!

Shallow things

Here’s a class.

Write a method: public String shallowestC,
that returns the shallowest String in the tree that
starts with the letter “c”

public class TreeNode {
 String myItem;
 List<TreeNode> myChildren;
}

wug

Sea of
Azov cleverness

caring
Answer here would be
“cleverness”, of course

Breadth-first search (BFS)

Solve this problem with a breadth-first
traversal, also called breadth-first search (BFS)

BFS

How did it go? Did you try recursion? It
turns out iteration is much easier…

Iterative BFS

How do we make this happen?

Let’s start by examining the iterative DFS
case

Iterative DFS

Iteration for a linked list would have looked like this:

This will take us down the depth of the tree

But what about the nodes we left behind? DFS doesn’t
mean only go deep, it means go deep first

 TreeNode current = this;
 while (current != null) {
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 current = current.myChildren.get(0);
 }

That kind of DFS

m

a b

d c d

current

That kind of DFS

m

a b

d c d

current

That kind of DFS

m

a b

d c d
current

That kind of DFS

m

a b

d c d
current

Now what?

DFS

Idea: store the nodes we left behind in a list

After we’re done going down, which one do
we want next? Another one that’s also deep…

…or nearby us, or the latest one we added to
the list

Seems like a job for a stack

DFS (the full story)
 public String dfsForC()
 Stack<TreeNode> fringe = new Stack<>();
 fringe.push(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.pop();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

DFS (the full story)
 public String dfsForC()
 Stack<TreeNode> fringe = new Stack<>();
 fringe.push(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.pop();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

Current starts at
this

DFS (the full story)
 public String dfsForC()
 Stack<TreeNode> fringe = new Stack<>();
 fringe.push(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.pop();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

If current is
what we want,

we’re done

DFS (the full story)
 public String dfsForC()
 Stack<TreeNode> fringe = new Stack<>();
 fringe.push(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.pop();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

Otherwise, we
need to look
further in the

tree. So add our
children as

possible places
to go next

DFS (the full story)
 public String dfsForC()
 Stack<TreeNode> fringe = new Stack<>();
 fringe.push(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.pop();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

Choose a node
to try next. Take
the most recent
one we added,

because it is the
deepest

BFS

Great, so we made DFS

We really wanted BFS, though

Only a small change away!!

BFS (the full story)
 public String bfsForC()
 Queue<TreeNode> fringe = new LinkedList<>();
 fringe.offer(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.poll();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

Only a few
changes…

BFS (the full story)
 public String bfsForC()
 Queue<TreeNode> fringe = new LinkedList<>();
 fringe.offer(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.poll();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

Choose a node
to try next. Take
the least recent
one we added,

because it is the
shallowest

Best-first search
 public String bestfsForC()
 PriorityQueue<TreeNode> fringe = new PriorityQueue<>();
 fringe.offer(this);
 TreeNode current = null;
 while (!fringe.isEmpty()) {
 current = fringe.poll();
 if (current.myItem.startsWith("c")) {
 return current.myItem;
 }
 for (TreeNode child: current.myChildren) {

fringe.push(child);
}

 }
 return null;
 }

