
Graphs, Priority Queues

Quote of the Week: “As I walked out the door
toward the gate that would lead to my

freedom, I knew if I didn't leave my bitterness
and hatred behind, I'd still be in prison.”

Project 2 group evaluations

They’re due Thursday, with Monday/
Tuesday lab

You will get a 0 on the project unless you
complete this

Please be honest and fair. These may affect
your group members’ scores

Midterm 2 on Friday

Same time, place

7 - 9 pm

Sections 101 - 103: 144 Dwinelle

Sections 104 - 109: 155 Dwinelle

Cheat sheet: one 8.5 x 11 sheet, two sides

Project 3 released on Friday

Also a 3 - 4 group project

Project is about speed (actual time, not
theoretical)

Project 3

Write a program to solve puzzles like this:

Credit: http://magicpuzzles.org/

http://magicpuzzles.org/

Your project 3

Motivated by a simple problem: How to figure
out the steps required to solve a puzzle like
this? A tray with

blocks you can
slide around

Goal: move green
block to bottom-

right corner

Visualizing the problem

One possible
move

Another
possible move

It looks kinda like a tree

But wait…!

The same thing!

But wait…!

Also

Any time we make
a move, we could

always undo it

It looks kinda like a tree

But it violates the rules of trees

No edges point back up the tree

No node is descended from two nodes

So it’s not a tree

We call it a graph

Graphs

A graph is a collection of nodes that can be
connected in any which way

Linked List

Graph

Tree

Graph Traversals

Sliding block puzzle

To solve this problem, we must find a path
through the graph from our initial tray to our
goal tray

Essentially, this boils down to iterating
through our graph, starting from the initial
tray, until we come across the goal tray

Graph traversal

How do we iterate over the nodes of a graph?

A graph isn’t much different from a tree, so
let’s try tree traversal!

Traversing a graph like a tree

Kinda works…?

 Stack<Tray> fringe = new Stack<>();
 fringe.push(initialTray);
 while (!fringe.isEmpty()) {
 Tray currentTray = fringe.pop();
 // do stuff
 for (Tray t : currentTray.nextTrays()) {
 fringe.push(t);
 }
 }

0

1 2

3 4 6

I’ve labeled the boards
with numbers, for

convenience

Let’s see the
traversal in action

0

1 2

3 4 5

Step 1: Create
a fringe

0

1 2

3 4 5

The fringe (a Stack)

Step 2: Put
initial tray in

fringe

0

1 2

3 4 5

0

Step 3: Take
something from
the fringe, make

it “current”
0

1 2

3 4 5

0

current

Check if it’s the
goal (it’s not), so
add adjacents to

fringe
0

1 2

3 4 5

0

current

2

1

Take something,
check if goal.

It’s not.

0

1 2

3 4 5

current

2

1

Add adjacent to
fringe

0

1 2

3 4 5

current

2

1

4

3

0

Take something,
make it current

0

1 2

3 4 5

current

2

4

3

0

Check if goal.
It’s not.

0

1 2

3 4 5

current

2

4

3

0

Add adjacent to
fringe

0

1 2

3 4 5

current

2

4

3

0

2

1

Wait a minute!!

Traversing a graph like a tree

We end up going in circles!

What went wrong?

The rules of trees ensure that, starting from
root, there is only one possible path to each
node

But for graphs, we can keep finding the same
node over-and-over again

Graph traversal

Solution?

Recall the fringe is meant to be a set of nodes
we’ve temporarily passed by and intend to
return to later

So, let’s not put something in the fringe if
we’ve already visited it

Graph traversal

 Stack<Tray> fringe = new Stack<>();
 fringe.push(initialTray);
 while (!fringe.isEmpty()) {
 Tray currentTray = fringe.pop();
 // do stuff
 for (Tray t : currentTray.nextTrays()) {
 if (!alreadyVisited(t)) {
 fringe.push(t);
 }
 }
 }

What is this really?
Stack<Tray> fringe = new Stack<>();

 Set<Tray> visited = new HashSet<>();
 fringe.push(initialTray);
 while (!fringe.isEmpty()) {
 Tray currentTray = fringe.pop();
 // do stuff
 visited.add(currentTray);
 for (Tray t : currentTray.nextTrays()) {
 if (!visited.contains(t)) {
 fringe.push(t);
 }
 }
 }

Graph traversal — the full story

The same as tree traversal

Except we make sure to not repeat ourselves

Quiz part 1: path finding

I claimed that finding the goal board during
the traversal is essentially the same problem
as figuring out the path to the goal board

Is it really?

Quiz part 1: path finding

public class GraphNode {
 String myItem;
 List<GraphNode> myAdjacents;
 /**
 * Prints out the items of the nodes you have
 * to follow from this node until you find a

 * you find a node with target item
 */
 public void printPathTo(String target) {
 // TODO your code here
 }
}

Quiz part 1: path finding
 public void printPathTo(String target) {
 Set<GraphNode> visited = new HashSet<>();
 Stack<GraphNode> fringe = new Stack<>();
 Map<String, String> steps = new HashMap<>();
 fringe.push(this);
 while (!fringe.isEmpty()) {
 GraphNode currentNode = fringe.pop();
 if (currentNode.myItem.equals(target)) {
 break;
 }
 visited.add(currentNode);
 for (GraphNode g : currentNode.myAdjacents) {
 if (!visited.contains(g)) {
 steps.put(g.myItem, currentNode.myItem);
 fringe.push(g);
 }
 }
 }
 Stack<String> reversePath = new Stack<>();
 String currentStep = target;
 while (currentStep != null) {
 String previousStep = steps.get(currentStep);
 if (previousStep != null) {
 reversePath.push(previousStep);
 }
 currentStep = previousStep;
 }
 while (!reversePath.isEmpty()) {
 System.out.println(reversePath.pop());
 }
 }

Our problem: an implicit graph
Here again is our traversal code

Notice we don’t have one object that stores the
entire graph of possible tray configurations

Stack<Tray> fringe = new Stack<>();
 Set<Tray> visited = new HashSet<>();
 fringe.push(initialTray);
 while (!fringe.isEmpty()) {
 Tray currentTray = fringe.pop();
 // do stuff
 visited.add(currentTray);
 for (Tray t : currentTray.nextTrays()) {
 if (!visited.contains(t)) {
 fringe.push(t);
 }
 }
 }

Our problem: an implicit graph

Instead, if each tray just knows about the
trays that can follow it, then we implicitly
have a graph

We never actually have a variable of type
Graph<Tray> that stores all the trays

Lucky us, because…

…the graph of possible trays is usually far
too big for us to store in memory at once

Good thing we only have to look at one local
part at a time

For completeness, though: what if we wanted
to store the whole explicit graph?

Digression: explicit graph
representations

Data structures with nodes

For linked lists, we had a LinkedList class,
that stored a reference to the first node, from
which could be found all the other nodes

LinkedList

ListNode ListNode ListNode

myHead

Data structures with nodes

For trees, we had a Tree class, that stored a
reference to the root, from which could be found all
the other nodes

Tree

TreeNode

TreeNode TreeNodemyRoot

Data structures with nodes

For graphs, we could have a Graph class, that
stores a reference to ???, from which could be found
all the other nodes

Graph

GraphNode

GraphNode GraphNode
my???

?

GraphNode

Graph data structure

What would the Graph object store a
reference to?

Because a graph can have any structure, there
isn’t an obvious “first” or “starting” node in
general

I guess we just have to store all of
them

The Graph object will store an array, one spot
for each node

Warning: strange
assumption!!

But first, an assumption

Before discussing the graph representations, I
will first introduce an assumption

The graph does not store arbitrary objects (like
Strings, Trays, etc.). Instead, it can only store
the integers 0 … N (if there are N+1 vertices).

Wha…? Why?

Will be justified later!

Example graph we want to
represent in Java

1 2

0

3

The theoretical
(conceptual) graph

The graph data structure

The graph object will store an array, one spot
for each vertex

Graph
myVertices

1 2

0

3

0

1

2

3

Indices of the array
match the vertices

The graph data structure

The only thing that matters about a graph is
which vertices have edges between them

The graph data structure

So each array will contain a list of vertices
that are adjacent

Graph
myVertices

1 2

0

3
0

1

2

3

1 3

2

0 2

1

The graph data structure

So each array will contain a list of vertices
that are adjacent

Graph
myVertices

0

1

2

3

1 3

2

0 2

1

The connections between
these nodes are NOT the

edges in our graph!

These are just a list
of adjacent nodes

The graph data structure

Graph
myVertices

0

1

2

3

1 3

2

0 2

1

1 2

0

3

This is called the adjacency list
associated with node 0. It tells you the

vertices adjacent to 0

Graph data structure: a picture

A graph is nothing more than a set of vertices
and connections between them

All the information is here

Graph
myVertices

0

1

2

3

1 3

2

0 2

1

Story of a beautiful partnership: the
sequel

A graph can be represented as an array of
linked lists!

Why linked lists?

Linked lists make it easy to append new
items to the end, make it easy to add edges

But what if we want to check if an edge
exists? e.g. check if 0 —> 2?

Must iterate through list at 0 until we find
2… not cool!

Alternative: array of arrays

Store an array rather than a list, tells you
whether it is adjacent

Graph
myVertices

1 2

0

3

0

1

2

3

F T F T
0 1 2 3

F F T F
0 1 2 3

T F T F
0 1 2 3

F T F F
0 1 2 3

Alternative: array of arrays
Commonly drawn like this:

Graph
myVertices

1 2

0

3
F T F T

0 1 2 3

F F T F
T F T F
F T F F

0

1

2

3

Two graph representations

F T F T
0 1 2 3

F F T F
T F T F
F T F F

0

1

2

3

0

1

2

3

1 3

2

0 2

1

Array of adjacency lists Adjacency matrix

Pros/cons of two graph
representations

The matrix is faster to check if there exists an
edge (just index into the array)

But, the matrix but a waste of space if there
are lots of false values

Graphs of other things

So, we can now store a graph of integers 0 …
N

What if we want to store a graph of
something else? Like Strings, or tray objects?

Easy! We’ll have a map from object to
number, and back

Say we want to represent this
conceptual graph

wug

wugswales

whales

Here’s the picture

wug

wugswales

whales

“wug”
“wugs”

“wales”
“whales”

0
1
2
3

Object Index

F F T F
0 1 2 3

F F T T
F T F F
F F F F

0

1

2

3

Map from
object to index

Adjacency
structure

The
conceptual

graph

Graphs of other things

Consist of two parts:

The indexer, which associates each item
with an index

And the adjacency structure, which keeps
track of all the connections

What’s this indexer thing?

The reason we separate them out is so that
graphs of all different kinds of things can
have essentially the same core structure

This means someone could write 1 graph
processing function that could work on all
sorts of graphs

Digression complete!

Break

Back to our problem…

Sliding block puzzle

Yay we learned about explicit graphs~

But these were irrelevant for our block
sliding problem, which is an implicit graph

We decided to solve this problem using
traversals. Are we done?

Not yet! We want a faster solution

A new idea

When we have a choice which way to go…

Shouldn’t we choose the best option?

Introducing heuristics (your new
best friend)

Idea: Choose the one that moves the block
closer to the goal position. Quantify this with
a number.

This number is called a heuristic, just a guess

It might be wrong. Sometimes, moving the
block toward the goal is the wrong thing to
do. But it’s a reasonable guess

Change our code!
Stack<Tray> fringe = new Stack<>();

 Set<Tray> visited = new HashSet<>();
 fringe.push(initialTray);
 while (!fringe.isEmpty()) {
 Tray currentTray = fringe.getBestItem();
 // do stuff
 visited.add(currentTray);
 for (Tray t : currentTray.nextTrays()) {
 if (!visited.contains(t)) {
 fringe.push(t);
 }
 }
 }

Introducing the priority queue ADT

What is this getBestItem method?

This is the method of a priority queue, not a
stack!

Priority queue

Supports operations

void add(Comparable c) (in Java,
this is offer)

Comparable extractMin() (in Java,
this is poll)

Min or max priority queue?

Would we have extractMin or extractMax?

Tradition is extractMin, but it’s very easy to
change to extractMax

Just flip everything I’m about to say for the
remainder of lecture

How to use priority queue

import java.util.PriorityQueue;

PriorityQueue<Tray> q = new
PriorityQueue<Tray>();

q.offer(new Tray());

Tray t = q.poll();

Let’s make a priority queue!

How?

First idea: Use a sorted linked list of items

Priority queue with a sorted list

add(Comparable c) find the correct spot
for the item in the sorted list, and put it there

Comparable extractMin() remove and
return the first item of the list

Runtimes?

add(Comparable c) find the correct spot
for the item in the sorted list, and put it there:
O(N) time in the worst case, where there are
N items in the queue

Comparable extractMin() remove and
return the first item of the list: O(1)

Priority queue with sorted list

Surely we can do better?

Let’s make a priority queue!

Second idea: Use a binary search tree
(already kinda sorted)

Priority queue with a BST

add(Comparable c) add to the BST like
normal

Comparable extractMin() go down to
the far left, and return/remove the item there

Runtimes?

add(Comparable c) add to the BST like
normal: O(log N) time, with N items in
queue

Comparable extractMin() go down to
the far left, and return/remove the item
there: O(log N) time

The BST priority queue

Both operations run in log time

This is basically as good as it gets

But there’s still something a little unsatisfying

The beefy BST

The BST can find any item in log time

But the priority queue only needs to find the
best item quickly

The BST is more powerful than we need

The beefy BST

The BST is a complicated structure (did you
have fun coding AVL tree rotations?)

Since it is complicated and more powerful
than we need, we might wonder if there’s a
simpler data structure that does the job just
as well

Simpler is better

Simpler data structures can be faster than
complicated ones, due to constant factors,
even if the asymptotic runtimes are the same

This turns out to be the case for priority
queue

A simpler idea for a tree

Why not just store the min item at the top of
the tree? That’s the easiest place to look

Introducing the binary heap

The binary (min) heap is a tree structure that
stores items with smallest at the top, and
bigger below

2

6 3

11 15 4

Heap vs. BST

Heap BST

small items

large items small items large items

medium items

Heap invariants

Specifically, a heap is a tree with an extra
invariant:

Every child is bigger than (or the same as)
its parent

Notice: left-right order in heap does not
matter at all! This makes it simpler than BST

Heap invariants

Remember a BST also had an almost
balanced invariant

Heaps will also have a balance invariant, but
it will be the maximally balanced property

Maximally balanced — why now?

For BSTs, maintaining maximal balance
requires a lot of work — even maintaining
almost balance required some wacky
rotations

Because the heap is simpler overall, it offsets
the extra work required to maintain maximal
balance

Recall: maximal balance

Was equivalent to the condition that the array
tree has no holes in it

Recall: maximal balance

We agreed the array tree would be more
memory efficient if the tree was maximally
balanced

So we’ll implement the heap with an array,
usually!

Heap properties

To sum up, a heap has additional two
properties over a normal tree:

The content property: Each child is bigger
than the parent

The structure property: Tree is maximally
balanced

Heap operations

Heap needs two operations

add(Comparable c)

Comparable extractMin()

Adding to a heap

When we add, we have to make sure to
maintain the properties

The structural property is the stricter of the
two policies, so let’s start with it

Adding to a heap

There is only one possible shape for a heap
with N nodes

The heap with 5
nodes always looks
like this, regardless

of content

Adding to a heap

There is only one possible shape for a heap
with N nodes

Not possible! Not
maximally balanced!

Adding to a heap

Hence, the shape of a heap with N + 1 nodes
is completely predictable

A new node always appears in the next open
spot (gets appended to the end of the array)

Adding to a heap

Heap with 5

Adding to a heap

Heap with 6

Adding to a heap

So, when we add a new item to the heap, we
have no choice except to put it in the bottom
right location

Adding to a heap

Say we add 0 to this heap

2

6 3

11 15 4

We have no choice…!

2

6 3

11 15 4 0

Okay, but

Now the content property is messed up

Adding to a heap

We want to fix the content property without
messing with the structure of the tree

We can do this by swapping the values of
nodes until we’re good

Swap!

2

6 3

11 15 4 0

Okay, but still not good enough…

2

6 0

11 15 4 3

Swap!!

2

6 0

11 15 4 3

Now we’re good

0

6 2

11 15 4 3

Bubbling up

After appending to the end, swap the value
of the node up the tree until the content
property is satisfied (this is called bubbling
up)

This is the full story with add

(Easier than an AVL tree, right?)

Heap operations

void add(Comparable c): append an
item to the end, then swap it up the tree until
okay: O(logN), potentially have to swap all
the way to the top

Comparable extractMin()

Extract min

It’s easy to figure out the value of the min
item in the heap

It’s just the root (position 1 in the array)

But how do we take it out?

Extract min

The shape of a heap with N - 1 nodes is
completely predictable

Adding to a heap

Heap with 6

Adding to a heap

Heap with 5

Extract min

We have no choice except to remove the
bottom right element

But that’s not the one we want to remove! We
want to remove the top!

So: First swap the top element with the
bottom, then remove

Let’s remove min

0

1 2

11 15 4 3

First swap

3

1 2

11 15 4 0

Then take off

3

1 2

11 15 4

Great, but

Now the content property is messed up

(not again!)
3

1 2

11 15 4

Extract min

We have to fix the content property without
messing with the structure

Back to swapping!

This time, we’ll swap the new top down the
tree

Extract min

Which way do we swap the 3 down?

Swap so the smallest thing ends up top

3

1 2

11 15 4

Swap!!!

3

1 2

11 15 4

Now we’re good

1

3 2

11 15 4

Bubbling down

After swapping the top with the bottom, and
taking off the bottom, bubble down the new
top until it hits the correct spot

This is the full story with extract min

(Easier than an BST remove, right?)

Heap operations

void add(Comparable c): append an
item to the end, then swap it up the tree until
okay: O(logN), potentially have to swap all
the way to the top

Comparable extractMin()swap top and
bottom, take off bottom, bubble down new
top: O(logN), potentially have to swap all the
way down

Heap vs. BST

Heap ultimately has the same asymptotic
runtimes as BST for representing a priority queue

But a heap is implemented with an array, which is
far more memory efficient than nodes with tons
of pointers

And the most complicated operations in a heap
are swapping values at array indices, which is
super fast

Heap vs. BST: fun facts

Heap BST

small items

large items small items large items

medium items

Heap vs. BST: fun facts

Heap is maximally balanced

BST is usually almost balanced (well, AVL
tree is)

Heap vs. BST: fun facts

Heap is usually implemented as an array tree

BST is usually implemented with nodes

Heap vs. BST: fun facts

Both can get/remove the min element in log
time

Both can add new items in log time

Heap is slightly faster for priority queue

Heap vs. BST: fun facts

BST can find any item in the tree in log time

Heap can find any item in the tree in…?

Heap contains

How do we write this method for a heap?

boolean contains(int item)

Uh oh.

Does the heap contain 4?

1

3 2

11 15 4

Does the heap contain 4?

Good question.

1

3 2

11 15 4

Does the heap contain 4?

Good question.

Might as well start by iterating

1

3 2

11 15 4

Does the heap contain 4?

1

3 2

11 15 4

Is this 4?

Does the heap contain 4?

1

3 2

11 15 4

Nope

Does the heap contain 4?

1

3 2

11 15 4

Now what?

If this were a BST, we could tell if we should
go look down left or right

But there’s no hint at the direction in heap

1

3 2

11 15 4

This would also have been a valid heap

1

3 2

11 4 15

Heap contains

In general, there’s no way to know where an
item is in a heap

There are cute optimizations you can make,
but asymptotically it’s not better than just
searching through every item in the heap

Heap vs. BST: fun facts

BST: Can check if contains any item in log
time

Heap: Can check if contains any item in
linear time (how sad!) — Heap is really only
good as a priority queue

Quiz time!

This is more of a midterm review question,
and doesn’t necessarily have to do with
anything we just learned

Quiz — Median maintainer

Invent a data structure that supports the
following operations:

void add(int item)

int getMedian()

Your goal is to have as fast asymptotic
runtimes as possible

Quiz — Median maintainer

Assume you have the
following structures at
your disposal to help

LinkedList

ArrayList

HashSet

HashMap

BST

Stack

Queue

PriorityQueue

Graph

Quiz — Median maintainer

Hint 1: You should be able to have getMedian
at constant time, and add at log time

Quiz — Median maintainer

Hint 2: Half the items are smaller than the
median, and half of them are larger than the
median

Maybe have two separate collections: the
items that are smaller, and the items that are
larger…

Quiz — Median maintainer

Solution: Maintain two priority queues, one
of which is a max priority queue, and the
other of which is a min priority queue

Main idea

4

0

1

2

9

7

6

The median
Items less than
median (max

priority queue)

Items greater
than median (min

priority queue)

Main idea

4

0

1

2

9

7

6

If we add items here, the new
median will be the smallest

thing in this collection (so we
want min pq)

Main idea

4

0

1

2

9

7

6

If we add items here, the new
median will be the largest

thing in this collection (so we
want max pq)

