
Graphs, Priority Queues

Quote of the Week: “As I walked out the door 
toward the gate that would lead to my 

freedom, I knew if I didn't leave my bitterness 
and hatred behind, I'd still be in prison.”



Project 2 group evaluations

They’re due Thursday, with Monday/
Tuesday lab

You will get a 0 on the project unless you 
complete this

Please be honest and fair. These may affect 
your group members’ scores



Midterm 2 on Friday

Same time, place 

7 - 9 pm

Sections 101 - 103: 144 Dwinelle 

Sections 104 - 109: 155 Dwinelle

Cheat sheet: one 8.5 x 11 sheet, two sides



Project 3 released on Friday

Also a 3 - 4 group project

Project is about speed (actual time, not 
theoretical)



Project 3

Write a program to solve puzzles like this:

Credit: http://magicpuzzles.org/

http://magicpuzzles.org/


Your project 3

Motivated by a simple problem: How to figure 
out the steps required to solve a puzzle like 
this? A tray with 

blocks you can 
slide around

Goal: move green 
block to bottom-

right corner



Visualizing the problem

One possible 
move

Another 
possible move



It looks kinda like a tree



But wait…!

The same thing!



But wait…!



Also

Any time we make 
a move, we could 

always undo it



It looks kinda like a tree

But it violates the rules of trees

No edges point back up the tree

No node is descended from two nodes



So it’s not a tree

We call it a graph



Graphs

A graph is a collection of nodes that can be 
connected in any which way

Linked List

Graph

Tree



Graph Traversals



Sliding block puzzle

To solve this problem, we must find a path 
through the graph from our initial tray to our 
goal tray

Essentially, this boils down to iterating 
through our graph, starting from the initial 
tray, until we come across the goal tray



Graph traversal

How do we iterate over the nodes of a graph?

A graph isn’t much different from a tree, so 
let’s try tree traversal!



Traversing a graph like a tree

Kinda works…?

  Stack<Tray> fringe = new Stack<>(); 
  fringe.push(initialTray); 
  while (!fringe.isEmpty()) { 
   Tray currentTray = fringe.pop(); 
   // do stuff 
   for (Tray t : currentTray.nextTrays()) { 
    fringe.push(t); 
   } 
  }



0

1 2

3 4 6

I’ve labeled the boards 
with numbers, for 

convenience



Let’s see the 
traversal in action

0

1 2

3 4 5



Step 1: Create 
a fringe

0

1 2

3 4 5

The fringe (a Stack)



Step 2: Put 
initial tray in 

fringe

0

1 2

3 4 5

0



Step 3: Take 
something from 
the fringe, make 

it “current”
0

1 2

3 4 5

0

current



Check if it’s the 
goal (it’s not), so 
add adjacents to 

fringe
0

1 2

3 4 5

0

current

2

1



Take something, 
check if goal. 

It’s not. 

0

1 2

3 4 5

current

2

1



Add adjacent to 
fringe

0

1 2

3 4 5

current

2

1

4

3

0



Take something, 
make it current

0

1 2

3 4 5

current

2

4

3

0



Check if goal. 
It’s not.

0

1 2

3 4 5

current

2

4

3

0



Add adjacent to 
fringe

0

1 2

3 4 5

current

2

4

3

0

2

1



Wait a minute!!



Traversing a graph like a tree

We end up going in circles!

What went wrong? 

The rules of trees ensure that, starting from 
root, there is only one possible path to each 
node

But for graphs, we can keep finding the same 
node over-and-over again



Graph traversal

Solution?

Recall the fringe is meant to be a set of nodes 
we’ve temporarily passed by and intend to 
return to later

So, let’s not put something in the fringe if 
we’ve already visited it



Graph traversal

  Stack<Tray> fringe = new Stack<>(); 
  fringe.push(initialTray); 
  while (!fringe.isEmpty()) { 
   Tray currentTray = fringe.pop(); 
   // do stuff 
   for (Tray t : currentTray.nextTrays()) { 
    if (!alreadyVisited(t)) { 
     fringe.push(t); 
    } 
   } 
  }



What is this really?
Stack<Tray> fringe = new Stack<>(); 

  Set<Tray> visited = new HashSet<>(); 
  fringe.push(initialTray); 
  while (!fringe.isEmpty()) { 
   Tray currentTray = fringe.pop(); 
   // do stuff 
   visited.add(currentTray); 
   for (Tray t : currentTray.nextTrays()) { 
    if (!visited.contains(t)) { 
     fringe.push(t); 
    } 
   } 
  }



Graph traversal — the full story

The same as tree traversal

Except we make sure to not repeat ourselves



Quiz part 1: path finding

I claimed that finding the goal board during 
the traversal is essentially the same problem 
as figuring out the path to the goal board

Is it really?



Quiz part 1: path finding

public class GraphNode { 
 String myItem; 
 List<GraphNode> myAdjacents; 
 /** 
 * Prints out the items of the nodes you have 
 * to follow from this node until you find a 

  * you find a node with target item 
  */ 
 public void printPathTo(String target) { 
  // TODO your code here 
 } 
} 



Quiz part 1: path finding
 public void printPathTo(String target) { 
  Set<GraphNode> visited = new HashSet<>(); 
  Stack<GraphNode> fringe = new Stack<>(); 
  Map<String, String> steps = new HashMap<>(); 
  fringe.push(this); 
  while (!fringe.isEmpty()) { 
   GraphNode currentNode = fringe.pop(); 
   if (currentNode.myItem.equals(target)) { 
    break; 
   } 
   visited.add(currentNode); 
   for (GraphNode g : currentNode.myAdjacents) { 
    if (!visited.contains(g)) { 
     steps.put(g.myItem, currentNode.myItem); 
     fringe.push(g); 
    } 
   } 
  } 
  Stack<String> reversePath = new Stack<>(); 
  String currentStep = target; 
  while (currentStep != null) { 
   String previousStep = steps.get(currentStep); 
   if (previousStep != null) { 
    reversePath.push(previousStep); 
   } 
   currentStep = previousStep; 
  } 
  while (!reversePath.isEmpty()) { 
   System.out.println(reversePath.pop()); 
  } 
 }



Our problem: an implicit graph
Here again is our traversal code

Notice we don’t have one object that stores the 
entire graph of possible tray configurations

Stack<Tray> fringe = new Stack<>(); 
  Set<Tray> visited = new HashSet<>(); 
  fringe.push(initialTray); 
  while (!fringe.isEmpty()) { 
   Tray currentTray = fringe.pop(); 
   // do stuff 
   visited.add(currentTray); 
   for (Tray t : currentTray.nextTrays()) { 
    if (!visited.contains(t)) { 
     fringe.push(t); 
    } 
   } 
  }



Our problem: an implicit graph

Instead, if each tray just knows about the 
trays that can follow it, then we implicitly 
have a graph

We never actually have a variable of type 
Graph<Tray> that stores all the trays



Lucky us, because…

…the graph of possible trays is usually far 
too big for us to store in memory at once

Good thing we only have to look at one local 
part at a time

For completeness, though: what if we wanted 
to store the whole explicit graph?



Digression: explicit graph 
representations



Data structures with nodes

For linked lists, we had a LinkedList class, 
that stored a reference to the first node, from 
which could be found all the other nodes

LinkedList

ListNode ListNode ListNode

myHead



Data structures with nodes

For trees, we had a Tree class, that stored a 
reference to the root, from which could be found all 
the other nodes

Tree

TreeNode

TreeNode TreeNodemyRoot



Data structures with nodes

For graphs, we could have a Graph class, that 
stores a reference to ???, from which could be found 
all the other nodes

Graph

GraphNode

GraphNode GraphNode
my???

?

GraphNode



Graph data structure

What would the Graph object store a 
reference to?

Because a graph can have any structure, there 
isn’t an obvious “first” or “starting” node in 
general



I guess we just have to store all of 
them

The Graph object will store an array, one spot 
for each node



Warning: strange 
assumption!!



But first, an assumption

Before discussing the graph representations, I 
will first introduce an assumption

The graph does not store arbitrary objects (like 
Strings, Trays, etc.). Instead, it can only store 
the integers 0 … N (if there are N+1 vertices).

Wha…? Why? 

Will be justified later!



Example graph we want to 
represent in Java

1 2

0

3

The theoretical 
(conceptual) graph



The graph data structure

The graph object will store an array, one spot 
for each vertex

Graph
myVertices

1 2

0

3

0

1

2

3

Indices of the array 
match the vertices



The graph data structure

The only thing that matters about a graph is 
which vertices have edges between them



The graph data structure

So each array will contain a list of vertices 
that are adjacent

Graph
myVertices

1 2

0

3
0

1

2

3

1 3

2

0 2

1



The graph data structure

So each array will contain a list of vertices 
that are adjacent

Graph
myVertices

0

1

2

3

1 3

2

0 2

1

The connections between 
these nodes are NOT the 

edges in our graph!

These are just a list 
of adjacent nodes



The graph data structure

Graph
myVertices

0

1

2

3

1 3

2

0 2

1

1 2

0

3

This is called the adjacency list 
associated with node 0. It tells you the 

vertices adjacent to 0



Graph data structure: a picture

A graph is nothing more than a set of vertices 
and connections between them

All the information is here

Graph
myVertices

0

1

2

3

1 3

2

0 2

1



Story of a beautiful partnership: the 
sequel

A graph can be represented as an array of 
linked lists!



Why linked lists?

Linked lists make it easy to append new 
items to the end, make it easy to add edges

But what if we want to check if an edge 
exists? e.g. check if 0 —> 2?

Must iterate through list at 0 until we find 
2… not cool!



Alternative: array of arrays

Store an array rather than a list, tells you 
whether it is adjacent

Graph
myVertices

1 2

0

3

0

1

2

3

F T F T
0       1       2       3

F F T F
0       1       2       3

T F T F
0       1       2       3

F T F F
0       1       2       3



Alternative: array of arrays
Commonly drawn like this:

Graph
myVertices

1 2

0

3
F T F T

0       1       2       3

F F T F
T F T F
F T F F

0

1

2

3



Two graph representations

F T F T
0       1       2       3

F F T F
T F T F
F T F F

0

1

2

3

0

1

2

3

1 3

2

0 2

1

Array of adjacency lists Adjacency matrix



Pros/cons of two graph 
representations

The matrix is faster to check if there exists an 
edge (just index into the array)

But, the matrix but a waste of space if there 
are lots of false values



Graphs of other things

So, we can now store a graph of integers 0 … 
N

What if we want to store a graph of 
something else? Like Strings, or tray objects?

Easy! We’ll have a map from object to 
number, and back



Say we want to represent this 
conceptual graph

wug

wugswales

whales



Here’s the picture

wug

wugswales

whales

“wug”
“wugs”

“wales”
“whales”

0
1
2
3

Object Index

F F T F
0       1       2       3

F F T T
F T F F
F F F F

0

1

2

3

Map from 
object to index

Adjacency 
structure

The 
conceptual 

graph



Graphs of other things

Consist of two parts:

The indexer, which associates each item 
with an index

And the adjacency structure, which keeps 
track of all the connections



What’s this indexer thing?

The reason we separate them out is so that 
graphs of all different kinds of things can 
have essentially the same core structure

This means someone could write 1 graph 
processing function that could work on all 
sorts of graphs



Digression complete!



Break



Back to our problem…



Sliding block puzzle

Yay we learned about explicit graphs~

But these were irrelevant for our block 
sliding problem, which is an implicit graph

We decided to solve this problem using 
traversals. Are we done? 

Not yet! We want a faster solution



A new idea

When we have a choice which way to go…

Shouldn’t we choose the best option?



Introducing heuristics (your new 
best friend)

Idea: Choose the one that moves the block 
closer to the goal position. Quantify this with 
a number.

This number is called a heuristic, just a guess

It might be wrong. Sometimes, moving the 
block toward the goal is the wrong thing to 
do. But it’s a reasonable guess



Change our code!
Stack<Tray> fringe = new Stack<>(); 

  Set<Tray> visited = new HashSet<>(); 
  fringe.push(initialTray); 
  while (!fringe.isEmpty()) { 
   Tray currentTray = fringe.getBestItem(); 
   // do stuff 
   visited.add(currentTray); 
   for (Tray t : currentTray.nextTrays()) { 
    if (!visited.contains(t)) { 
     fringe.push(t); 
    } 
   } 
  }



Introducing the priority queue ADT

What is this getBestItem method?

This is the method of a priority queue, not a 
stack!



Priority queue

Supports operations

void add(Comparable c) (in Java, 
this is offer) 

Comparable extractMin() (in Java, 
this is poll)



Min or max priority queue?

Would we have extractMin or extractMax?

Tradition is extractMin, but it’s very easy to 
change to extractMax

Just flip everything I’m about to say for the 
remainder of lecture



How to use priority queue

import java.util.PriorityQueue; 

PriorityQueue<Tray> q = new 
PriorityQueue<Tray>(); 

q.offer(new Tray()); 

Tray t = q.poll();



Let’s make a priority queue!

How? 

First idea: Use a sorted linked list of items



Priority queue with a sorted list

add(Comparable c) find the correct spot 
for the item in the sorted list, and put it there 

Comparable extractMin() remove and 
return the first item of the list



Runtimes?

add(Comparable c) find the correct spot 
for the item in the sorted list, and put it there: 
O(N) time in the worst case, where there are 
N items in the queue 

Comparable extractMin() remove and 
return the first item of the list: O(1)



Priority queue with sorted list

Surely we can do better?



Let’s make a priority queue!

Second idea: Use a binary search tree 
(already kinda sorted)



Priority queue with a BST

add(Comparable c) add to the BST like 
normal 

Comparable extractMin() go down to 
the far left, and return/remove the item there



Runtimes?

add(Comparable c) add to the BST like 
normal: O(log N) time, with N items in 
queue 

Comparable extractMin() go down to 
the far left, and return/remove the item 
there: O(log N) time



The BST priority queue

Both operations run in log time

This is basically as good as it gets

But there’s still something a little unsatisfying



The beefy BST

The BST can find any item in log time

But the priority queue only needs to find the 
best item quickly

The BST is more powerful than we need



The beefy BST

The BST is a complicated structure (did you 
have fun coding AVL tree rotations?)

Since it is complicated and more powerful 
than we need, we might wonder if there’s a 
simpler data structure that does the job just 
as well



Simpler is better

Simpler data structures can be faster than 
complicated ones, due to constant factors, 
even if the asymptotic runtimes are the same

This turns out to be the case for priority 
queue



A simpler idea for a tree

Why not just store the min item at the top of 
the tree? That’s the easiest place to look



Introducing the binary heap

The binary (min) heap is a tree structure that 
stores items with smallest at the top, and 
bigger below

2

6 3

11 15 4



Heap vs. BST

Heap BST

small items

large items small items large items

medium items



Heap invariants

Specifically, a heap is a tree with an extra 
invariant:

Every child is bigger than (or the same as) 
its parent

Notice: left-right order in heap does not 
matter at all! This makes it simpler than BST



Heap invariants

Remember a BST also had an almost 
balanced invariant

Heaps will also have a balance invariant, but 
it will be the maximally balanced property



Maximally balanced — why now?

For BSTs, maintaining maximal balance 
requires a lot of work — even maintaining 
almost balance required some wacky 
rotations

Because the heap is simpler overall, it offsets 
the extra work required to maintain maximal 
balance



Recall: maximal balance

Was equivalent to the condition that the array 
tree has no holes in it



Recall: maximal balance

We agreed the array tree would be more 
memory efficient if the tree was maximally 
balanced

So we’ll implement the heap with an array, 
usually!



Heap properties

To sum up, a heap has additional two 
properties over a normal tree:

The content property: Each child is bigger 
than the parent

The structure property: Tree is maximally 
balanced



Heap operations

Heap needs two operations

add(Comparable c) 

Comparable extractMin()



Adding to a heap

When we add, we have to make sure to 
maintain the properties

The structural property is the stricter of the 
two policies, so let’s start with it



Adding to a heap

There is only one possible shape for a heap 
with N nodes

The heap with 5 
nodes always looks 
like this, regardless 

of content



Adding to a heap

There is only one possible shape for a heap 
with N nodes

Not possible! Not 
maximally balanced!



Adding to a heap

Hence, the shape of a heap with N + 1 nodes 
is completely predictable

A new node always appears in the next open 
spot (gets appended to the end of the array)



Adding to a heap

Heap with 5



Adding to a heap

Heap with 6



Adding to a heap

So, when we add a new item to the heap, we 
have no choice except to put it in the bottom 
right location



Adding to a heap

Say we add 0 to this heap

2

6 3

11 15 4



We have no choice…!

2

6 3

11 15 4 0



Okay, but

Now the content property is messed up



Adding to a heap

We want to fix the content property without 
messing with the structure of the tree

We can do this by swapping the values of 
nodes until we’re good



Swap!

2

6 3

11 15 4 0



Okay, but still not good enough…

2

6 0

11 15 4 3



Swap!!

2

6 0

11 15 4 3



Now we’re good

0

6 2

11 15 4 3



Bubbling up

After appending to the end, swap the value 
of the node up the tree until the content 
property is satisfied (this is called bubbling 
up)

This is the full story with add

(Easier than an AVL tree, right?)



Heap operations

void add(Comparable c): append an 
item to the end, then swap it up the tree until 
okay: O(logN), potentially have to swap all 
the way to the top 

Comparable extractMin()



Extract min

It’s easy to figure out the value of the min 
item in the heap

It’s just the root (position 1 in the array)

But how do we take it out?



Extract min

The shape of a heap with N - 1 nodes is 
completely predictable



Adding to a heap

Heap with 6



Adding to a heap

Heap with 5



Extract min

We have no choice except to remove the 
bottom right element

But that’s not the one we want to remove! We 
want to remove the top!

So: First swap the top element with the 
bottom, then remove



Let’s remove min

0

1 2

11 15 4 3



First swap

3

1 2

11 15 4 0



Then take off

3

1 2

11 15 4



Great, but

Now the content property is messed up

(not again!)
3

1 2

11 15 4



Extract min

We have to fix the content property without 
messing with the structure

Back to swapping!

This time, we’ll swap the new top down the 
tree



Extract min

Which way do we swap the 3 down?

Swap so the smallest thing ends up top

3

1 2

11 15 4



Swap!!!

3

1 2

11 15 4



Now we’re good

1

3 2

11 15 4



Bubbling down

After swapping the top with the bottom, and 
taking off the bottom, bubble down the new 
top until it hits the correct spot

This is the full story with extract min

(Easier than an BST remove, right?)



Heap operations

void add(Comparable c): append an 
item to the end, then swap it up the tree until 
okay: O(logN), potentially have to swap all 
the way to the top 

Comparable extractMin()swap top and 
bottom, take off bottom, bubble down new 
top: O(logN), potentially have to swap all the 
way down



Heap vs. BST

Heap ultimately has the same asymptotic 
runtimes as BST for representing a priority queue

But a heap is implemented with an array, which is 
far more memory efficient than nodes with tons 
of pointers

And the most complicated operations in a heap 
are swapping values at array indices, which is 
super fast



Heap vs. BST: fun facts

Heap BST

small items

large items small items large items

medium items



Heap vs. BST: fun facts

Heap is maximally balanced

BST is usually almost balanced (well, AVL 
tree is)



Heap vs. BST: fun facts

Heap is usually implemented as an array tree

BST is usually implemented with nodes



Heap vs. BST: fun facts

Both can get/remove the min element in log 
time

Both can add new items in log time

Heap is slightly faster for priority queue



Heap vs. BST: fun facts

BST can find any item in the tree in log time

Heap can find any item in the tree in…?



Heap contains

How do we write this method for a heap?

boolean contains(int item) 

Uh oh.



Does the heap contain 4?

1

3 2

11 15 4



Does the heap contain 4?

Good question.

1

3 2

11 15 4



Does the heap contain 4?

Good question.

Might as well start by iterating

1

3 2

11 15 4



Does the heap contain 4?

1

3 2

11 15 4

Is this 4?



Does the heap contain 4?

1

3 2

11 15 4

Nope



Does the heap contain 4?

1

3 2

11 15 4

Now what?



If this were a BST, we could tell if we should 
go look down left or right

But there’s no hint at the direction in heap

1

3 2

11 15 4



This would also have been a valid heap

1

3 2

11 4 15



Heap contains

In general, there’s no way to know where an 
item is in a heap

There are cute optimizations you can make, 
but asymptotically it’s not better than just 
searching through every item in the heap



Heap vs. BST: fun facts

BST: Can check if contains any item in log 
time

Heap: Can check if contains any item in 
linear time (how sad!) — Heap is really only 
good as a priority queue



Quiz time!

This is more of a midterm review question, 
and doesn’t necessarily have to do with 
anything we just learned



Quiz — Median maintainer

Invent a data structure that supports the 
following operations:

void add(int item) 

int getMedian() 

Your goal is to have as fast asymptotic 
runtimes as possible



Quiz — Median maintainer

Assume you have the 
following structures at 
your disposal to help

LinkedList

ArrayList

HashSet

HashMap

BST

Stack

Queue

PriorityQueue

Graph



Quiz — Median maintainer

Hint 1: You should be able to have getMedian 
at constant time, and add at log time



Quiz — Median maintainer

Hint 2: Half the items are smaller than the 
median, and half of them are larger than the 
median

Maybe have two separate collections: the 
items that are smaller, and the items that are 
larger…



Quiz — Median maintainer

Solution: Maintain two priority queues, one 
of which is a max priority queue, and the 
other of which is a min priority queue



Main idea

4

0

1

2

9

7

6

The median
Items less than 
median (max 

priority queue)

Items greater 
than median (min 

priority queue)



Main idea

4

0

1

2

9

7

6

If we add items here, the new 
median will be the smallest 

thing in this collection (so we 
want min pq)



Main idea

4

0

1

2

9

7

6

If we add items here, the new 
median will be the largest 

thing in this collection (so we 
want max pq)


