
Algorithms Case Study:
Sorting

Quote of the Week: “It would be reasonable to suppose
that a routine time or an eventless time would seem

interminable. It should be so, but it is not. It is the dull
eventless times that have no duration whatsoever. A
time splashed with interest, wounded with tragedy,

crevassed with joy - that’s the time that seems long in
the memory. … Eventlessness has no posts to drape

duration on. From nothing to nothing is no time at all.”

Next week’s labs are optional labs

Each worth 1 extra credit point

Monday’s lab is special — regex puzzle hunt!

I know it’s soon, but…

You have a final in 1.5 weeks

It looks like it’ll be the same difficulty as
midterm 2

Expect it to be fully cumulative

Midterm 2

Certain questions on midterm 2 didn’t have
as high averages as I hoped

So I feel compelled to reteach these concepts

When using big O notation, we like to write
things like:

The runtime of our program is in O(n)

What does this mean? Why are we using the
word “in”?

Big O Set

We use the word “in” because O(n) is actually
a set. In fact, it is a set of functions.

By claiming that the runtime of a program is
in O(n), we are claiming that the runtime of
our program can be expressed by a function
that the set O(n) contains

Big O Set

In general, we can make statements like

f(n) is in O(g(n))

We claim that some function f(n) is in the set
of functions O(g(n)) — a set that looks like it
has something to do with the function g(n)

Big O Set

O(g(n)) can be thought of as the set of functions
that grow similarly to g(n) as n gets big

For example, O(n) is the set of functions that
grow similarly to the function g(n) = n

To decided whether a particular function f(n) was
in this set, we use the following condition:

Big O Set

lim
n!1

f(n)

g(n)
< 1

This essentially just means that f(n) isn’t a lot
bigger than g(n)

How do we represent this condition in Java?
It’s kinda difficult. Luckily, there is a shortcut
condition for polynomials.

Big O Set

lim
n!1

f(n)

g(n)
< 1

For big O with polynomials, we decided that
constant factors didn’t matter, and only the
highest term mattered

To decide if 2N2 + 3N + 4 is in O(5N + 7) we
ignore the constants multiplied to each term,
and just consider the top terms

Because N2 is bigger than N, 2N2 + 3N + 4 is
NOT in O(5N + 7)

Big O Set

But anything with a highest term of N, or
lower, would be in O(5N + 7)

For example, N is in O(5N + 7). So is 2N + 3.
So is 10N + 1000. So is 4. And so on

We decide there are infinitely many functions
in O(5N + 7)

Big O Set

Big O Set
public class BigO {
 int myDegree;

 public BigO(Polynomial p) {
 myDegree = p.myCoefficients.length;
 }

 private double size() {
 return Double.POSITIVE_INFINITY;
 }

 public boolean contains(Polynomial p) {
 return myDegree >= p.myCoefficients.length;
 }
}

This was the most important question on the
midterm

This question gets at the heart of what the
class is about

Quiz: Redo Bookstore

Design a data structure where you can…

Add a book with an author O(1)

Remove a book O(1)

Find the author of a book O(1)

Print all books by an author O(b)

Print all books in the order they were added O(B)

Quiz part 2: Bookstore

Writing efficient programs

In 61A, you learned to program

In 61BL, you are learning to program well

Choosing efficient data structures

As we’ve seen, different data structures can have
different runtimes for basic operations

For example, checking if an ArrayList contains
a certain item is slow, but checking if a
HashSet contains a certain item is fast

When programming, you should be sure to
choose the data structure that makes sense for
your problem

Choosing efficient algorithms

But choosing data structures isn’t everything

Sometimes choosing the problem-solving
strategy, or the algorithm, makes a big
difference

Example: sorting

Problem: Given a list of numbers (or
Comparable objects), arrange the list in order
from smallest to largest (or vice versa)

My first sorting algorithm: bubble
sort

How could we sort an array of integers?

Idea 1: Iterate through the array, and swap
adjacent items if out of order

public static void bubbleSort(int[] arr) {
 for (int i = 0; i < arr.length - 1; i++) {
 if (arr[i] > arr[i + 1]) {
 swap(arr, i, i + 1);
 }
 }
 }

My first sorting algorithm: bubble
sort

4 3 1 7 2 8 5 0

My first sorting algorithm: bubble
sort

4 3 1 7 2 8 5 0

Iterate and swap!

My first sorting algorithm: bubble
sort

3 4 1 7 2 8 5 0

Iterate and swap!

My first sorting algorithm: bubble
sort

3 1 4 7 2 8 5 0

Iterate and swap!

My first sorting algorithm: bubble
sort

3 1 4 2 7 8 5 0

Iterate and swap!

My first sorting algorithm: bubble
sort

3 1 4 2 7 5 8 0

Iterate and swap!

My first sorting algorithm: bubble
sort

3 1 4 2 7 5 0 8

Iterate and swap!

My first sorting algorithm: bubble
sort

3 1 4 2 7 8 0 5

Still not sorted…

My first sorting algorithm: bubble
sort

How could we sort an array of integers?

Idea 1: Iterate through the array, and swap
adjacent items if out of order

This doesn’t actually work. Have to repeat the
process multiple times, until no more need to
swap

My first sorting algorithm: bubble
sort

 public static void bubbleSort(int[] arr) {
 boolean swappedSomething = true;

 while (swappedSomething) {
 swappedSomething = false;
 for (int i = 0; i < arr.length - 1; i++) {
 if (arr[i] > arr[i + 1]) {
 swap(i, i + 1);
 swappedSomething = true;
 }
 }
 }
 }

My first sorting algorithm: bubble
sort

The code we just wrote implements a sorting
algorithm called bubble sort

Have we solved the problem of sorting?

Take it from the President

Eric Schmidt: “What is the most efficient way
to sort a million 32-bit integers?”

Barack Obama: “I think the bubble sort
would be the wrong way to go.”

Take it from the President

Oh no.

What’s wrong with bubble sort?

In the worst case, the runtime of bubble sort
will be O(N2), where there are N items we are
sorting

We may have to repeat the loop in the
worst case N times

Can we do better?

Runtime hierarchy

Sorting N items…

O(N2): bad for a sorting algorithm

O(NlogN): normal for a sorting algorithm

O(N): the ideal

O(logN): probably not going to happen

So many sorting algorithms

Bubble sort

Selection sort

Heapsort (selection sort with a priority queue)

Insertion sort

Merge sort

Quicksort

So many sorting algorithms

Bubble sort

Selection sort

Heapsort

Insertion sort

Merge sort

Quicksort

You coded all these in
lab a long time ago

These are new for this
week, so I’ll go over

them

Merge sort

The algorithm:

Step 1: Split your list of items in half

Step 2: Recursively merge sort each half

Step 3: Merge the two now sorted halves
into a sorted whole

Merge sort walkthrough

The key is that taking two lists that are
individually sorted, and then merging them
into one bigger list that is sorted, is easy to do

If between them the lists have N items, then
the merge step takes O(N) time

You already coded merge in the linked list
labs

Merge sort runtime

What is the runtime of merge sort?

A picture will help illustrate it…

Merge sort runtime

Say we start with N items

Merge sort runtime

At each step, we divide in two…

Merge sort runtime

Each group represents a recursive call

Merge sort runtime

Initial function call with N items

Merge sort runtime

Splits into 2 functions calls, each with N/2 nodes

Merge sort runtime

Each of which splits into 2 more, each with N/4 nodes

Merge sort runtime

And so on

Merge sort runtime

How much time does each function call take?

Merge sort runtime

Each function call has to merge, which takes time
linear with the number of nodes in the function

Merge sort runtime

Takes N time

Merge sort runtime

Each one takes N/2 time. In total, N/2 + N/2 = N time

Merge sort runtime

Each one takes N/4 time. In total, N/4 + N/4 + N/4 + N/4 = N

Merge sort runtime

See the pattern?

Merge sort runtime

Takes N time

Merge sort runtime

Takes N time

Merge sort runtime

Takes N time

Merge sort runtime

Takes N time

Merge sort runtime

Each set of recursive calls at the same depth takes N
time

Merge sort runtime

The total runtime must be N * the number of levels

Merge sort runtime

How many levels?

Merge sort runtime

We keep dividing N by 2 until we hit 1…

Merge sort runtime

Oh, it’s our old friend logN!

Merge sort runtime

Runtime is O(N*logN)

Quicksort

Merge sort is nice and all, but it’s not the only
cool kid on the block

Quicksort

The algorithm

Choose one item from the list (randomly?), call it
the pivot

Divide your list in two halves: items smaller
than the pivot, and items larger than it

Recursively quicksort each half

Concatenate (not merge) the two halves together

Quicksort runtime

We can use the exact same argument we used
with merge sort to show quicksort’s runtime
is also in O(NlogN)…

Quicksort runtime

At each step, we put the smaller half of items in one
recursive call, and the larger half of items in the other

Quicksort runtime

So we keep dividing by two until there is just one
item

Quicksort runtime

A function call with N nodes takes N time to move
half the items to the left, and half the items to the right

Quicksort runtime

So it’s actually the exact same argument as merge
sort

Quicksort runtime problem!

In the previous argument, we assumed that
half the items would end up on one side of
the pivot, and half would end up on the other

This relies on the assumption that the pivot is
the median item

What if it’s not? What if we chose the
smallest item as the pivot, for example?

Quicksort with smallest item pivot

…

Quicksort with smallest item pivot

……

Remember, the runtime is

O(N * number of levels)

How many levels are here now?

If we only split off one element each time, it
will take us N levels to get to the bottom

So the runtime is O(N2)

Quicksort runtime problem!

So if the pivot is the smallest item, runtime is
O(N2) (slow!!)

If the pivot is the median item, runtime is
O(NlogN) (fast!!)

So, should we always make the median item
the pivot?

Finding the median item

Algorithm:

First sort the list, and then choose the item
at the middle index

Uh oh.

Finding the median item

Actually, there’s a better algorithm that you
(should) learn in CS 170

Even so, finding the median element takes
enough time that it slows down quicksort
significantly

Choosing the pivot

Another idea:

The pivot isn’t the median element, but is just
a random item from the list

On average, this will roughly divide the list in
half

The tradeoff is worth it, because it’s a lot faster
to pick randomly than to calculate the median

Choosing the pivot

An even better idea: Randomly select three
items, and then choose the median of them

Trying to balance tradeoffs between
choosing an exact median, and choosing
randomly

The results

Bubble sort O(N) best, O(N2) worst

Selection sort O(N2)

Heapsort O(NlogN)

Insertion sort O(N) best, O(N2) worst

Merge sort O(NlogN)

Quicksort O(N2) worst, O(NlogN) best

Basically never happens

How much of a difference does it
make, anyway?

http://www.youtube.com/watch?
v=SJwEwA5gOkM&t=24m15s

http://www.youtube.com/watch?v=SJwEwA5gOkM&t=24m15s

All right, Mr. President, we’re
convinced!

The bubble sort is clearly not the way to go

Quicksort appears to be the fastest (hence its
name)

Is this the end of the story?

Asymptotic runtime isn’t
everything

How would you choose between quicksort,
merge sort, and heapsort, anyway? Is
insertion sort ever useful?

Quicksort tends to be fastest in practice

Okay, but… there are additional factors to
consider.

Stability

A sort is stable if…

…items with the same value end up in the
same relative positions before and after the
sort

What?

Stability

Here’s an list with two 4s in it. I’ve colored one blue,
and the other pink.

There are two valid ways to sort this list of numbers

If the algorithm is guaranteed to give us the left one,
then the algorithm is stable

4, 5, 3, 2, 4, 1, 9, 0

0, 1, 2, 3, 4, 4, 5, 9 0, 1, 2, 3, 4, 4, 5, 9

Stability

Why would this even matter

Sorting with multiple keys

Imagine you have an array of Product objects
you’re selling online:

You want to sort the products by price. But
among products with the same price, you want
to sort them by rating. How could you do this?

public class Product {
String myName;

 double myPrice;
double myRating;

}

Sorting with multiple keys

Algorithm:

First, sort the products by rating

Then, stably sort the products by price

On the second sort, you’re guaranteed that
products with the same price will end up in the
order they started in (which was sorted by
rating)

Okay, so I guess stability might be
useful

So what?

The fastest way to implement quicksort on
arrays isn’t stable

Heapsort isn’t stable either

But merge sort is

Conclusion: If you don’t need stability, quicksort
may be fastest. If you do, consider merge sort

Asymptotic runtime isn’t
everything

When choosing a sorting algorithm, it’s
important to consider whether stability is
important to you

Asymptotic runtime isn’t
everything

Are there other factors to consider, too…?

Consider your situation carefully

Other factors — receiving one new
item

Say you currently have a list of books, sorted by title

Then someone hands you a new book to add to the
list. What should you do?

Option 1: Iterate through the list until you find
the correct spot for the book, and put it there

Option 2: Stick the book at the end, and then re-
sort the whole list

Other factors — receiving one new
item

No need to re-sort the whole thing, so option
1 is clearly best

This is basically insertion sort

Conclusion: If you receive items one-by-one
occasionally, rather than all at once, you
essentially have no choice except to insertion
sort

Other factors — consider the nature
of your data

Say you need to sort a list of million 32-bit
integers, but you happened to know all of the
integers were either 2015, 2014, or 2013

Can we take advantage of this fact to speed
up the sorting?

Counting sort

I propose a simple algorithm called counting
sort

It will sound kinda dumb, but sometimes the
simplest solution is best

Counting sort

The algorithm:

Tally up each type of item

Then create a new list with however many
copies of each item

Counting sort walkthrough

Say we want to sort this list of numbers:

We’ll maintain a tally:

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

Iterate through the numbers one-by-one, and
tally

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2013 2014 2015

Counting sort walkthrough

What can we tell from this information?

We know the sorted list will look like two 2013s,
followed by four 2014s, followed by three 2015s

2013 2014 2015

2 4 5

counts

First, create an empty array big enough to
hold all of the numbers:

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2 4 5

counts

From the counts, we can figure out what the
starting position of each kind of year is

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

starts

0 2 6

From the counts, we can figure out what the
starting position of each year is

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

starts

Now we just iterate through our original list,
and put items in the correct spots

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

It’s the first 2015,
so we know

where it must go
in the array

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015

Now the starting
positions of 2015s

has moved

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015

Let’s continue

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

20152014

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015 20152014

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015 201520142013

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015 201520142013 2015

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015 2015201420142013 2015

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2015 20152014 201420142013 2015

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2014 2015 20152014 201420142013 2015

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2014 2015 20152014 20142013 20142013 2015

Counting sort walkthrough

2013 2014 2015

2015, 2014, 2015, 2013, 2015, 2014, 2014, 2014, 2013

2014 2015 20152014 20142013 20142013 2015

Done!

Counting sort runtime?

We just iterated through our list twice, once
to count up the items, and once to place items

So this is O(2N), or O(N)!

Counting sort runtime?

O(N) seems too good to be true

What's the catch?

We essentially had to sort our tallies — 2013,
2014, or 2015 — beforehand. But since there
were only three things, this could be
considered constant time

Counting sort runtime?

Conclusion: If the variety of things we’re
sorting is small, counting sort is by far the
fastest

Sorting, what’s the point?

Sorting is essentially a solved problem

If you need to sort things in your own code,
just call standard library functions

Sorting, what’s the point?

We study sorting as a case study of algorithm design

What’s important is the thought process behind
analyzing which algorithms are appropriate in which
situations

Do I need properties like stability, or can I get away
without them?

If I know something special about my data, can I take
advantage of that somehow?

