
Review and Additional Data
Structure Tradeoffs

Quote of the Week: “You know people for a
reason, a season, or a lifetime.”

via Samantha Eng, source unknown

Regex puzzle hunt winning teams

Will be announce on piazza tonight, after I
confer with the TAs

Come to lab tomorrow to pick up your
prize!!

There’s a final this Friday

3 - 6 pm, 1 Pimentel

Cheat sheet: 3 sides of 8.5” x 11” paper

So many surveys — sorry

This course has always conducted a final
survey — see link on piazza

Is worth 1 point of your final

HKN conducts a survey during this lecture,
at the end

Is the lecture quiz for this lecture

What we want

Computer scientists are problem solvers first,
coders second

Ideally, we solve problems purely in terms of
algorithms, taking advantage of high-level
structures called ADTs

What we want: example

Problem: Given a list of Strings, how would
you group them by those that are anagrams
of each other?

Solution: Maintain a map, where the key is
the sorted representation of each String, and
the values is the list of all Strings that sort to
it. Fill up this map by checking each String
one-by-one

What we want: example

The point: We speak purely in terms of
conceptual ideas like maps and lists and
sorting

You could implement this algorithm in Java,
or Python, or Ruby…

What we want

List MapSet Priority Queue Graph

What we have (to begin with)

node array

What we have (to begin with)

an object with data,
and references to

other nodes

a fixed-length region of
memory that stores

objects in a row, with
constant time access

node array

1

How can we build the top structures
out of the bottom primitives?

node array

List MapSet Priority Queue Graph

node array

LinkedList

List MapSet Priority Queue Graph

node array

LinkedList ArrayList

List MapSet Priority Queue Graph

node array

ArraySet? No…

List MapSet Priority Queue Graph

node array

Hashing

+

HashSet

List MapSet Priority Queue Graph

LinkedList

node array

HashSet HashMap

List MapSet Priority Queue Graph

Hashing

+

LinkedList

node array

AVL Tree

TreeSet TreeMap

Binary Search Tree

Tree

List MapSet Priority Queue Graph

node array

AVL Tree

TreeSet TreeMap

Binary Search Tree

Tree

List MapSet Priority Queue Graph

Array tree!

node array

AVL Tree

Binary Search Tree

Tree

2-3-4 Tree Trie

List MapSet Priority Queue Graph

node array

AVL Tree

Binary Search Tree

Tree

List MapSet Priority Queue Graph

node array

AVL Tree

Binary Search Tree

Tree

Heap

List MapSet Priority Queue Graph

node array

Tree

Heap

List MapSet Priority Queue Graph

node array

List MapSet Priority Queue Graph

?

node array

List MapSet Priority Queue Graph

+

Array of Adjacency Lists

LinkedList

node array

List MapSet Priority Queue Graph

+

Adjacency Matrix

+

Array of Adjacency Lists

LinkedList

node array

List MapSet Priority Queue Graph

Is this the end of the story?

node array

List MapSet Priority Queue Graph

Nope!

node array

List MapSet Priority Queue Graph

Hashing

+
LinkedList

+

Linked Hash Map

node array

List MapSet Priority Queue Graph

+

Tree

Heap

Median Finding Structure

node array

List MapSet Priority Queue Graph

+

Generic Graph

node array

List MapSet Priority Queue Graph

The sky’s the limit, really…

From nothing, something

From our primitives, the node and the array,
we can build anything

Data structures can be endlessly recombined
with each other to create more fanciful and
complicated ones

The interface/implementation
distinction

There is a difference between what
something acts like (the interface), and what
it is underlyingly (the implementation)

node array

LinkedList ArrayList

List

The interface/implementation
distinction

In terms of functionality, all that matters is
what the data structure acts like, but…

What a data structure is underlyingly may
affect its runtime

The interface/implementation
distinction

Ex: LinkedList and ArrayList pretty much
have the same methods, but they run at
different speeds

The interface/implementation
distinction

Java likes to maintain the interface/implementation
distinction using polymorphism

List l = new LinkedList();

Map m = new HashMap();

Set s = new TreeSet();

The static type defines what behavior is allowed, but
the dynamic type determines what actually happens

Data structures are flexible

We taught you the standard/basic
implementations of some common data
structures

But these are not the only options, in
principle

Example Problem: Mapping out
your priorities

(rejected final problem, because it was too
similar to last year)

Can you implement a priority queue using a
hash map?

Example Problem: Mapping out
your priorities

How do the runtimes of the HashPriorityQueue
differ from the HeapPriorityQueue?

For adding an item with a priority?

For taking out the min value?

For changing priority?

Can you think of an application where the
HashPriorityQueue might be preferred?

Example Problem: Mapping out
your priorities

Where there are N items in the queue…

For adding an item with a priority?: O(1)
hashing, O(logN) heap

For taking out the min value?: O(N) hashing,
O(logN) heap

For changing priority?: O(1) hashing, O(N)
heap

Take a moment, close your eyes, and relax
Compose yourself, and return with a refreshed mind

The Final Break

A criminally ignored topic: memory
efficiency and data structures

Two types of efficiency

When we design data structures, we can
optimize for two types of efficiencies

Runtime, roughly corresponding to the
number of operations the structures has to
do

Memory, roughly corresponding to the
number of objects in the structure

The time/memory tradeoff

There is often a tradeoff between these two
efficiencies

Using more memory can yield faster
runtimes

The time/memory tradeoff

Example: The BiMap (a two-way map)

public V get(K key)

public K get(V value)

How to implement this structure?

The BiMap

Option 1: use one HashMap<K, V>

public V get(K key): Simply get from
the hash map

public K get(V value): Iterate
through all the keys until you find the one
with the given value

The BiMap

Option 1: use one HashMap<K, V>

public V get(K key): Simply get from
the hash map: O(1)

public K get(V value): Iterate
through all the keys until you find the one
with the given value: O(N), if N keys

The BiMap

Option 2: use two maps, one HashMap<K,
V> and one HashMap<V, K>

public V get(K key): Simply get from
one hash map: O(1)

public K get(V value): Simply get
from the other hash map: O(1)

The BiMap

Moral of the story: We can store twice as
much memory to get a speedup on one of our
methods

This is a common tradeoff throughout data
structures

The time/memory tradeoff

So, how do you pick between optimizing
time or memory?

Optimize time. Always. Time is what matters
(unless you straight-up run out of memory).
Except…

The time/memory tradeoff

…Being too wasteful with memory will
actually slow your time down

(wait for 61C for the reason)

Analyzing memory efficiency

Can be done with big O, in a way very similar
to analyzing time

A single reference or primitive takes O(1)
space

An array of N references takes O(N) space

An object takes 1 + as much space as the
primitives and references inside it

Memory efficiency example: don’t
repeat yourself

Here’s a sliding block puzzle, like from
project 3

Memory efficiency example: don’t
repeat yourself

How would you represent this as an object?

One approach: 2D array of Block
objects

2 2

width height
The Green block

One approach: 2D array of Block
objects

2 2

width height

1 1

width height

The Green block

One orange
block

One approach: 2D array of Block
objects

2 2

width height

1 1

width height

1 1

width height

The Green block

One orange
block

The other
orange
block

One approach: 2D array of Block
objects

But do we really need two objects for the
orange blocks? They contain exactly the same
information…

One approach: 2D array of Block
objects

2 2

width height

1 1

width height

A 2x2 block

A 1x1 block

One approach: 2D array of Block
objects

The point: think about whether you really
need two objects, or if you can get away
simply with two references to one object

We really would need two objects if blocks
could be modified in some way. But in this
case, a block never changes, so

Example: memory efficiency of
chaining hash map

How much memory does it take to store a
Key and Value object in a HashMap?

Let’s count the references

Example: memory efficiency of
chaining hash map

“key1” “value1” “key2” “value2”

“key3” “value3”

null

null

Example: memory efficiency of
chaining hash map

“key1” “value1” “key2” “value2”

“key3” “value3”

null

null

1

Example: memory efficiency of
chaining hash map

“key1” “value1” “key2” “value2”

“key3” “value3”

null

null

2

Example: memory efficiency of
chaining hash map

“key1” “value1” “key2” “value2”

“key3” “value3”

null

null

3

Example: memory efficiency of
chaining hash map

“key1” “value1” “key2” “value2”

“key3” “value3”

null

null

4

Example: memory efficiency of
chaining hash map

From this picture, we count about 3-4
references per key/value pair

What if we tried something else? Say, a linear
probing hash map

Example: memory efficiency of
linear probing hash map

“key1” “value1”

“key2” “value2”

“key3” “value3”

1

Example: memory efficiency of
linear probing hash map

“key1” “value1”

“key2” “value2”

“key3” “value3”

2

Example: memory efficiency of
linear probing hash map

“key1” “value1”

“key2” “value2”

“key3” “value3”

3

Example: memory efficiency of
linear probing hash map

From this picture, we count about 3
references per key/value pair

We tried to save memory by not having to
store linked list next pointers, but there
wasn’t much effect

Example: memory efficiency of
linear probing hash map

But this idea isn’t done yet

Example: memory efficiency of
linear probing hash map

“key1”

“key3”

“key2”

“value1”

“value3”

“value2”

key array value array

Example: memory efficiency of
linear probing hash map

“key1”

“key3”

“key2”

“value1”

“value3”

“value2”

key array value array1

Example: memory efficiency of
linear probing hash map

“key1”

“key3”

“key2”

“value1”

“value3”

“value2”

key array value array 2

Example: memory efficiency of
linear probing hash map

From this picture, we count about 2
references per key/value pair

We save memory by not having to storing a
KVPair object, but instead storing keys and
values in separate arrays

Example: memory efficiency of
hash map

The point: Java’s chaining HashMap is good
enough for most purposes

But if for some reason you need to be really
memory efficient, there are lighter-weight
options available

Example problem: ranges data
structure

(also a rejected final problem)

Consider a number line, from 0 to 100

You’re given a list of numbers that represent
marks on this line, for example:

0 10040 50 60 75

Example problem: ranges data
structure

You’re also given labels for each region of the
number line

0 10040 50 60 75

ABCDF

Example problem: ranges data
structure

Design a data structure that can take in a
number (say, 88.3), and decide what the label
for that number is

Memory efficiency matters a little bit

0 10040 50 60 75

ABCDF

Crazy solution

Create a HashMap<Double, String> from every
possible double between 0 and 100, to the label

Gets O(1) lookup time!

But the amount of memory required for this is
prohibitively bad

0 10040 50 60 75

ABCDF

Better solution

Recognize this is exactly a binary search tree

0 10040 50 60 75

ABCDF

Better solution

0 10040 50 60 75

ABCDF

60

7540

50 B A

CD

F

Other tradeoffs

The complexity/simplicity tradeoff

In this class, we’ve seen how using more
complicated data structures and algorithms
can provide asymptotic runtime
improvements over simple ones

For example, the sorting algorithm merge
sort is faster than the comparatively simple
insertion sort

The complexity/simplicity tradeoff

However, these were only asymptotic
benefits

What about in the real world?

Remember that asymptotic benefits only
apply when the amount of data is very large

The complexity/simplicity tradeoff

It turns out, simpler solutions work better on
small amounts of data

Less overhead getting started, etc.

Does this really matter? I thought we only cared
about large data

The complexity/simplicity tradeoff

Consider merge sort

Merge sort

Merge sort N elements

Merge sort

By merge sorting N/2 elements

Merge sort

By merge sorting N/4 elements

Merge sort

And so on

Merge sort complexity

Even when we merge sort a very large list,
we eventually end up merge sorting very
small lists

But is the complexity of merge sort really
necessary to sort small lists?

If you’re sorting a list of length 8, do you
really have to split in in half 3 more times?

Merge sort complexity

Idea: Merge sort on the big lists, but when
the list gets broken down to smaller sizes,
insertion sort them

This is closer to what people do in practice.
Adapt the sorting algorithm based on
conditions

And now, introducing…

My actual favorite data structure
This hash map (from earlier)

“key1”

“key3”

“key2”

“value1”

“value3”

“value2”

key array value array

My actual favorite data structure

This hash map (from earlier)

With a special hashing scheme

My actual favorite data structure

This hash map (from earlier)

With a special hashing scheme

…called “hash and hope”

My actual favorite data structure

The idea: When you call put(key,
value), if you happen to get a collision, just
ignore it, and overwrite the value

When you call get(key), don’t check for
key equality, just return the value that’s there
regardless

My actual favorite data structure
So actually, we didn’t need the key array

“value1”

“value3”

“value2”

value array

My actual favorite data structure

What’s great about this data structure

By far the fastest map (no need to handle
collisions: always O(1), no worst case)

By far the most memory efficient map
(just a single array)

By far the easiest map to code

My actual favorite data structure

Any cons?

(it might sometimes return the wrong answer)

My actual favorite data structure

But for certain applications, “hash and hope”
might not be so crazy

My actual favorite data structure

But for certain applications, “hash and hope”
might not be so crazy

Example: Maintain a map from words to
their probability of occurrence in a language

This is useful in translation

My actual favorite data structure

What happens with collisions?

My actual favorite data structure

If two words with similar probabilities
collide, then there’s not much of a problem,
because the values were similar anyway

My actual favorite data structure

Say a very common word collides with a very
uncommon word

Since the common word is more common,
you’ll be putting it into the map more often.
This means, it’s more likely that the value in
the map is the value for the common word,
not the uncommon word

My actual favorite data structure

The common word will usually have the
right value

The uncommon word will usually have the
wrong value

My actual favorite data structure

But it isn’t so bad for the uncommon word to
have the wrong value

Because it’s so uncommon, returning the
wrong answer will be a rare occurrence

So it probably won’t affect our analysis
much, anyway

My actual favorite data structure

The point: “Hash and hope” is far from your
standard map…

…but, sometimes you can get a little crazy
with highly specialized applications

Data structure tradeoffs

Runtime for one operation vs. runtime for
another

Speed vs. memory

Simplicity vs. complexity

Efficiency vs. getting the right answer

If you remember nothing else from
this class

Checking if a list contains something is not
fast

Oh by the way, if you were curious

