
UC Berkeley – Computer Science
CS61BL: Data Structures
Midterm 1, Summer 2017

Optional. Mark along the line to show your feelings Before exam: [! ____________________"].
 on the spectrum between ! and " . After exam: [! ____________________"].

This test has 8 questions worth a total of 30 points, and is to be completed in 110 minutes. The exam is closed book,
except that you are allowed to use one double-sided page of notes as a cheat sheet (front and back). No calculators or
other electronic devices are permitted. Give your answers and show your work in the space provided.

Write the statement out below in the blank provided and sign. You may do this before the exam begins. Any
plagiarism, no matter how minor, will result in points deducted from your exam.

“I have neither given nor received any assistance during the taking of this exam.”

I have neither given nor received any assistance during the taking of this exam.

 Signature: Sora

Write your name and student ID on the front page. Write the names of your neighbors. Write and sign the above
statement. Once the exam has started, write your class ID in the corner of every page.

Name: Sora Your Class ID: 9001

SID: 1 Name of person to left: Donald Duck

TA: Mickey Mouse Name of person to right: Goofy

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in mind that
we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do not get
overly captivated by interesting design issues or complex corner cases youÕre not sure about.

• Not all information provided in a problem may be useful.
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled and executed before

printing, but in the unlikely event that we do happen to catch any bugs during the exam, we’ll announce a fix. Unless
we specifically give you the option, the correct answer is not ‘does not compile.’

• ○ indicates that only one circle should be filled in.
• □ indicates that more than one box may be filled in.
• For answers which involve filling in a ○ or □, please fill in the shape completely.

UC BERKELEY
Class ID: _____	

 2

1. Dive to the Heart (4 pts)

Write the full output of attempting to compile and run the following programs. In the case of compiler errors, write
“Compiler Error”. In the case of runtime exceptions, you should write the output of lines that execute before the
exception occurs in addition to “Runtime Exception”. Each main method is run independently of the others.

Code Output
public	class	Palette	{	
				String	color;	
	
				public	Palette	blackOut()	{	
								color	=	"black";	
								return	this;	
				}	
	
				public	static	void	main(String[]	args)	{	
								Palette	iu	=	new	Palette();	
								iu.color	=	"red";	
								Palette	gd	=	iu.blackOut();	
								System.out.println(gd.color);	
								gd.color	=	"peach";	
								System.out.println(gd.color);	
								System.out.println(iu.color);	
				}	
}	

	
	
	

black	
peach	
peach	

	
When you run gd = iu.blackout(), gd’s
pointer will be reassigned to the iu
object, so when you print gd’s color, it
should be the same as iu’s color since
they’re the same color

	

public	class	Mym	{	
				String	xaler;	
	
				public	Mym(String	s)	{	
								this.xaler	=	s;	
				}	
	
				public	static	void	eterize(Object[]	arr)	{	
								for	(int	i	=	0;	i	<	arr.length;	i++)	{	
												Mym	lay	=	(Mym)	arr[i];	
												System.out.println(lay.xaler);	
								}	
				}	
	
				public	static	void	main(String[]	args)	{	
								Object[]	arr	=	{new	Mym("cs61bl"),		
																		new	Mym("rox"),	"covfefe"};	
								eterize(arr);	
				}	
}	

	
	
	

cs61bl	
rox	

Runtime	Exception	
	

Covfefe is just a string which is not a
Mym object. You cast it to a Mym
object, so the compiler will trust you.
But, you’ll be caught doing an illegal
cast at runtime.

	
The compiler will trust the cast even
though it’s illegal, so this code compiles.
Only at runtime will the error be caught

	

UC BERKELEY
Class ID: _____	

 3

Code Output
public	class	Astro	{	
				public	static	int	dreams	=	0;	
	
				public	void	realize(int	time)	{	
								time	=	dreams	+	time;	
								dreams	=	time;	
								System.out.println(dreams);	
				}	
	
				public	static	void	main(String[]	args)	{	
								Astro	rocky	=	new	Astro();	
								rocky.realize(10);	
								Astro	moon	=	new	Astro();	
								moon.realize(10);	
								System.out.println(Astro.dreams);	
				}	
}	

	
	
	
	
	
	

10	
20	
20	
	

dreams is a static variable, so changing
it holds for any instance of Astro.

	

public	class	CherryBomb	{	
					
				int	leaves	=	0;	
	
				public	void	explode(String	s)	{	
								s	=	"BOOM!";	
								leaves	+=	1;	
								System.out.println(s);	
				}	
	
				public	static	void	main(String[]	args)	{	
								CherryBomb	c	=	new	CherryBomb();	
								c.leaves	=	10;	
								String	s	=	"Whiplash";	
								c.explode(s);	
								System.out.println(s);	
								System.out.println(c.leaves);	
				}	
}	

	
	
	
	
	

BOOM!	
Whiplash	

11	
	

Changing String	s inside explode
changes the pointer of s inside the
method. The s in the main will still be
“whiplash” after calling explode

	

UC BERKELEY
Class ID: _____	

 4

2. Enchanted Dominion (4 pts)

Consider the following implementation of IntList:

public	class	IntList	{	
				public	int	head;	
				public	IntList	tail;	
				public	IntList(int	head,	IntList	tail)	{	
								this.head	=	head;	this.tail	=	tail;	
				}	
	
				public	static	void	swapTails(IntList	first,	IntList	second)	{	
								IntList	temp	=	first.tail;	
								first.tail	=	second.tail;	
								second.tail	=	temp;	
				}	
	
				public	static	void	swapHeads(int	x,	int	y)	{	
								int	temp	=	x;	
								x	=	y;	
								y	=	temp;	
				}	
}	
	
a. The following code is executed in order . There are no compiler or runtime errors. For each print statement,
fill in the bubble completely corresponding to the integer that's printed. You will be asked to draw two box-
and-pointer diagrams on the next page.

Statement(s) 1 2 3 4 5 6
IntList	L	=	new	IntList(1,	new	IntList(2,	new	

											IntList(3,	new	IntList(4,	null))));	

System.out.println(L.tail.tail.head);	

○

○

●

○

○

○

IntList	M	=	L.tail.tail;	

System.out.println(M.tail.head);	

//	Draw	the	state	of	the	program	on	next	page	

○

○

○

●

○

○

M.tail.tail	=	new	IntList(5,	null);	

IntList.swapTails(L,	M);	

System.out.println(M.tail.head);	

○

●

○

○

○

○

M.tail.tail.head	=	6;	

IntList.swapHeads(M.head,	L.head);	

System.out.println(M.head);	

○

○

○

○

○

●

UC BERKELEY
Class ID: _____	

 5

b. Now, fill in the box-and-pointer diagram below to represent the state of the program after the execution of
the 2nd box above. Not all boxes may be needed.

c. Now, fill in the box-and-pointer diagram below to represent the state of the program after the execution of the
final lin e above. Not all boxes may be needed.

Common error was having L point to (6→ 4→ 5 → null) and M point to (1→ 2→ null). The 6 and 1 should be
swapped

UC BERKELEY
Class ID: _____	

 6

3. Symphony of Sorcery (2 pts)

Consider the two classes defined below:

public	class	Patriot	{	
				public	String	name;	
				public	Patriot(String	name)	{	
								this.name	=	name;	
				}	
				public	void	politicate()	{	
								System.out.println("Give	me	liberty	or	give	me	death!");	
				}	
}	
	
public	class	Federalist	extends	Patriot	{	
				public	Federalist(String	name)	{	
								super(name);	
				}	
				public	void	politicate()	{	
								System.out.println("Defend	the	union!");	
				}	
}	
	
You now execute the below lines of code, in order . If the line(s) in a given box result in an error, mark the
bubble corresponding to the appropriate error (compiler or runtime error). Otherwise, mark the bubble
corresponding to the appropriate outputted value (Ø, P, or F from the “Print Output Table”). Fill in all bubbles
completely. The first two boxes are done for you.

Print Output Table
Code Output
Ø No print output.
P Give me liberty or give me death!
F Defend the union!

Line(s) Compiler

Error?
Runtime
Error?

Ø P F

Patriot	wash	=	new	Patriot("Washington");	 ○ ○ ● ○ ○
Patriot	ham	=	new	Federalist("Hamilton");	 ○ ○ ● ○ ○
ham.politicate();	 ○ ○ ○ ○ ●
Federalist	jay	=	new	Patriot("Jay");	
jay.politicate();	

● ○ ○ ○ ○

Federalist	ham2	=	ham;	 ● ○ ○ ○ ○
Federalist	wash2	=	(Federalist)	wash;	 ○ ● ○ ○ ○
Federalist	ham3	=	(Federalist)	ham;	
((Patriot)	ham3).politicate();	

○ ○ ○ ○ ●

UC BERKELEY
Class ID: _____	

 7

4. Mysterious Tower (4 pts)

a. Fill in the square next to the lines of code that can never cause a runtime error (not including system errors
such as StackOverflowError, OutOfMemoryError, etc.). You may assume that all code compiles and
method bodies do not contain code that would cause a runtime error.

□ if	(xianth.blurg	==	10)	

■ Zeeg	zarg	=	new	Zeeg();

■ while	(yebi	!=	null	&&	yebi.mianate())	

□ int	zel	=	da[10];	

□ Dylth	id	=	(Dylth)	xeonite;	

■ Charp	vir	=	gion;	

b. For each of the following propositions, fill in true or false completely. If the proposition is false, provide a
counterexample 𝑓 𝑛 and 𝑔(!). Assume ! ! and 𝑔! ! ! are positive, strictly increasing functions.

● True / ○ False: If 𝑓 ! !∈ !Ω ! ! , then ! (! ! must be in ! ! ! ! !

 ! 𝑛 ! _!_! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !_!_! ! !

○ True / ● False: If ! ! ! ! ! ! ! ! , then ! (𝑛) cannot be in ! (𝑓 𝑛)

 𝑓 𝑛 : 1 𝑔 𝑛 ! !

○ True / ● False: If 𝑓 𝑛 ∈ 𝑂(2! !) and 𝑓 ! ∈ ! ! !), then ! (𝑛! must be in Θ!1!

 ! ! !!! ! 𝑔 𝑛 : 𝑛

● True / ○ False: If 𝑓 𝑛 ∈ ! ! ! ! ! and ! ! ! ! ! ! ! ! , then ! ! must be in ! ! ! ! !

 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

● True / ○ False: If ! ! ! ! ! ! ! ! , then !" ! ! ! ! must be in ! ! !" ! ! ! ! !

 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 𝑛 : ! ! ! ! ! ! ! ! ! ! ! !

○ True / ● False: If !" ! ! ! ! ! ! ! !" ! ! ! ! ! , then ! ! must be in ! ! ! ! ! ! !

 ! ! ! 𝑛! 𝑔 𝑛 :𝑛

Common error: we asked for functions as counterexamples, not bounds

UC BERKELEY
Class ID: _____	

 8

5. Daybreak Town (3 pts)
a. Consider the SLList class, which represents a singly-linked list. A heavily abridged version of this class
appears below:

public	class	SLList	{	
				...	
				/*	Construct	an	empty	SLList.	*/	
				public	SLList()	{	...	}	
				/*	Adds	x	to	the	front	of	the	list.	*/	
				public	void	insertFront(int	x)	{	...	}	
				/*	Returns	the	index	of	x	in	the	list,	if	it	exists.	
							Otherwise,	returns	-1.	*/	
				public	int	indexOf(int	x)	{	...	}	
}	

"Well that's dumb," you observe after reading indexOf's comment, "-1 isn't a real index. That method
should produce an error in that case instead." You decide to write the SLListVista class, which must
have all of the functionality of SLList, except SLListVista's indexOf method produces a
NoSuchElementException in the event that x isn't present in the list. NoSuchElementException
is an unchecked exception. In the space provided, fill in the SLListVista class. You may not need all lines.
Each line should contain only one statement.

import	java.util.NoSuchElementException;	

public	class	SLListVista	extends	SLList	{	

				@Override	

				public	int	indexOf(int	x)	{	

								int	index	=	super.indexOf(x);	

								if	(index	==	-1)	{	

												throw	new	NoSuchElementException();	

								}	

								return	index;	

				}	

}	

	
Common errors:

• Assuming internals of SLList(.item, .next, etc)
• NoSuchElementException is an unchecked exception and it is not necessary to declare methods throw it.

No points were taken off for including it
• Calling super(x) instead of super.indexOf(x) is treated as a major syntax error
• Assuming internals(head, next, item..)

UC BERKELEY
Class ID: _____	

 9

b. Now that you've written your rad SLListVista class, you must test it! Fill in the test below to confirm that
indexOf correctly throws a NoSuchElementException when called on an empty list. Your test should
pass if and only if a NoSuchElementException is thrown by indexOf. You may assume SLListVista,	
NoSuchElementException, and JUnit are already imported. You may not need all lines. Each line should
contain only one statement. You might find the assertTrue(boolean	condition) method helpful.

@Test	
public	void	testIndexOfEmpty()	{	

								SLListVista	s	=	new	SLListVista();	

								boolean	flag	=	false;	

								try	{	

												s.indexOf(0);	

												fail();	

								}	catch	(NoSuchElementException	e){	

												flag	=	true;	

								}	

								assertTrue(flag);	

}	

Common Errors:

1. Did not test on an empty list
2. Had try/catch formatted wrong
3. Did not have an assert statement
4. Put assertTrue(list == null)
5. Tried to access variables declared in try block from catch block, but you can’t because of the scope of

the variables.
6. Did not have try catch block, instead only used assert
7. assertTrue(e == NoSuchElementException)
8. Used “return” in the catch block instead of an assert
9. Tried to use “expect” and “exception” as a variable or a method

UC BERKELEY
Class ID: _____	

 10

6. Radiant Garden (5 pts)

Complete the expand method in the DLList class, which mutates a circular doubly-linked list with a sentinel
node and expands it such that it passes the JUnit tests below. When expand is called on the list (1	3	5), the
list is mutated to (1	3	3	3	5	5	5	5	5). That is, the original value of list.get(0) gets repeated
list.get(0)	times	in the output list. This is then followed by the original value of list.get(1) repeated	
list.get(1)	times, et cetera. Your solution should modify the DLList instance that it is called on without
constructing any new DLLists. Assume all input list elements are larger than 0. For full credit, the DLList
must be well formed (all pointers are correct). Each line should contain only one statement.

import	static	org.junit.Assert.*;	
import	org.junit.Test;

public	class	DLList	{	
	
				private	DLNode	sentinel;	
	
				public	DLList()	{	...	}	
	
				private	class	DLNode	{	
								private	int	item;	
								private	DLNode	prev,	next;	
	
								public	DLNode(int	i,	DLNode	p,	DLNode	n)	{	
												item	=	i;	
												prev	=	p;	
												next	=	n;	
								}	
				}	
					
				@Override		
				public	boolean	equals(Object	o)	{	...	}		
				public	static	DLList	list(int...	args)	{	...	}		
				public	int	get(int	index)	{	...	}	
	
				@Test	
				public	void	testExpand()	{	
								DLList	d	=	DLList.list(1,	2,	3);	
								d.expand();	
								assertEquals(DLList.list(1,	2,	2,	3,	3,	3),	d);	
								DLList	d2	=	DLList.list(2,	1);	
								d2.expand();	
								assertEquals(DLList.list(2,	2,	1),	d2);	
								d2.expand();	
								assertEquals(DLList.list(2,	2,	2,	2,	1),	d2);	
				}	

UC BERKELEY
Class ID: _____	

 11

				public	void	expand()	{	
								DLNode	curr	=	sentinel.next;	

								while	(curr	!=	sentinel)	{	

												DLNode	next	=	curr.next;	

												for	(int	i	=	0; i	<	curr.item	-	1;	i++)	{	

																DLNode	newNode	=	new	DLNode(curr.item,	curr,	next);	

																curr.next	=	newNode;	

																next.prev	=	newNode;	

																curr	=	newNode;	

												}	

												curr	=	next;	

								}	

				}	

}

0. PNH (0 pts)

Hemolytic anemia is a class of anemia caused by premature breakdown of red blood cells in the
body. There is only one form of hemolytic anemia caused by an acquired intrinsic defect in the
red blood cell membrane. What is its name?

paroxysmal nocturnal hemoglobinuria (PNH)

Newsflash: Wild Jarmigon Spotted

UC BERKELEY
Class ID: _____	

 12

7. The Grid (4 pts)

Implement the gridMatch method, which returns true if sub is a subgrid of matrix. Otherwise, it returns
false. sub is a subgrid if it matches a contiguous section of the input matrix. You may assume both sub and
matrix are rectangular. You may assume that neither matrix nor sub have any dimensions of zero.

Examples:

Input Matrix Input Sub Matching portion Return Value

1 0 3 4
5 3 2 1
7 1 2 0
8 0 3 0

3 2
1 2

 1 0 3 4

5 3 2 1
7 1 2 0
8 0 3 0

true

1 0 3 4
-5 3 2 1
7 1 -2 0
8 0 3 0

-5 3 2
7 1 -2

1 0 3 4
-5 3 2 1
7 1 -2 0
8 0 3 0

true

 1 0 3 4

5 3 2 1
7 1 2 0
8 0 3 0

1 2
1 2

None

false

	
public	static	boolean	gridMatch(int[][]	matrix,	int[][]	sub)	{	

				boolean	contains	=	false;	

				for	(int	i	=	0;	i	<	matrix.length	-	sub.length	+	1;	i++)	{	

								for	(int	j	=	0;	j	<	matrix[0].length	-	sub[0].length	+	1;	j++)	{	

												boolean	match	=	true;	

												for	(int	a	=	0;	a	<	sub.length;	a++)	{	

																for	(int	b	=	0;	b	<	sub[0].length;	b++)	{	

																			match	=	match	&&	(matrix[i	+	a][j	+	b]	==	sub[a][b]);	

																}	
												}	
												contains	=	contains	||	match;	

								}	
				}	
				return	contains;	

}	

UC BERKELEY
Class ID: _____	

 13

8. Mirage Arena (4 pts)	

Gitlit is a version control system that records successive versions of a String. Newly constructed Gitlits
have a default initial backup: "Initial version." Fill in the Gitlit class so that the JUnit tests on the next page
pass. For full credit, your Gitlit solution must behave according to its comments. You may not need all lines.
Each line should contain only one statement.

import	static	org.junit.Assert.*;	
import	org.junit.Test;

public	class	Gitlit	{	
				public	Commit	head	=	new	InitialCommit();	
				public	static	final	String	ERR_MSG	=	"The	requested	commit	doesn't	exist.";	
					
				/**	Add	a	backup	to	Gitlit.	*/	
				public	void	recordBackup(String	backup)	{	
								head	=	new	Commit(backup,	head);	
				}	
	
				/**	Get	the	backup	i	backups	ago.	If	i	is	zero,	this	method	returns	the	most	
								recent	backup.	If	i	is	one,	this	method	returns	the	second	most	recent	
								backup,	etc.	If	i	is	invalid	(e.g.	if	it's	<	0	or	if	it's	>=	the	number	
								of	backups),	returns	Gitlit.ERR_MSG.	*/	
				public	String	getBackup(int	i)	{	
								if	(i	<	0)	return	Gitlit.ERR_MSG;	
								return	head.getBackup(i);	
				}	
	
				public	class	Commit	{	
								public	String	backup;	
								public	Commit	tail;	
	
								public	Commit(String	backup,	Commit	tail)	{	
												this.backup	=	backup;	this.tail	=	tail;	
								}	
	
								public	String	getBackup(int	i)	{	
												if	(i	==	0)	{	
																return	backup;	
												}	else	{	
																return	tail.getBackup(i	-	1);	
												}	
								}	
				}	
	
	
...	(continued	on	next	page)	

UC BERKELEY
Class ID: _____	

 14

				public	class	InitialCommit	extends	Commit	{	

								public	InitialCommit	()	{	

												super("Initial	version.",	null);	

								}									

								@Override	

								public	String	getBackup(int	i)	{	

												if	(i	==	0)	{	

																return	backup;	

												}	else	{	

																return	Gitlit.ERR_MSG;	

												}	

								}	

				}	

	
				@Test	
				public	void	testGetBackup()	{	
								Gitlit	g	=	new	Gitlit();	
								assertEquals("Initial	version.",	g.getBackup(0));	
								g.recordBackup("Update	1.");	
								g.recordBackup("Update	2.");	
								assertEquals("Update	1.",	g.getBackup(1));	
								assertEquals("Initial	version.",	g.getBackup(2));	
								assertEquals(Gitlit.ERR_MSG,	g.getBackup(3));	
								assertEquals(Gitlit.ERR_MSG,	g.getBackup(4));	
				}	
}	
	
Common Syntax Errors

1. Passing one argument into the Commit constructor. Takeaway: check the methods and constructors
provided for you, and make sure you satisfy not only the return type but also the arguments list

2. Initializing head, a pointer to a Commit object, to be a String “Initial commit.”. Takeaway: Make sure
the assigned value type matches the type of the variable

3. Referencing non-static head from Commit class, or non-static getBackup from Gitlit class. Takeaway:
Make sure you understand the accessibility and scope of variables and methods before you try to
reference them.

Common Conceptual Errors

1. Rewriting the Gitlit class or rewriting methods without extending any classes. Can’t have multiple
classes of the same name and writing methods in the new class will not change the Gitlit class

2. Writing a new class that extends Gitlit. Realize that testGetBackup instantiates a Gitlit object. So, the
new class would never be used.

UC BERKELEY
Class ID: _____	

 15

3. Forgetting constructor in the subclass of Commit, or not calling super constructor in the subclass’
constructor

Alternate Solution

1. Create a Commit class that represents the null value rather than only the last commit
2. Catching the NullPointerException in the getBackup method
3. Tail of new class (EndCommit) that extends Commit point to itself (head of Gitlet points to new

Commit (“Initial version.”, new EndCommit())
	

