
Asymptotics



CS61BL: It’s all about efficiency

An engineer will do for a dime what any fool will do for a dollar.

● Development Cost: How long does it take you to write your program? Can 

you speed up the process by using IDEs, unit testing, and efficient debugging 

skills?

● Computational Cost

○ Program runtime: How long does your program take to run?

○ Program memory: How much memory does your program use to run?

● Your job as a computer scientist: Look at a problem and choose the right 

data structures and algorithms to minimize cost



A Tale of Efficiency: Convert String[] into one String

● Option A: Use String concatenation. (e.g. “hello ” + “world”)
private static String stringConcat(String[] strings) {
    String result = "";
    for (String str : strings) {
        result += str;
    }
    return result;
}

● Option B: Use a StringBuilder. It has an append(String str) method.
private static String stringBuilderConcat(String[] strings) {
    StringBuilder result = new StringBuilder();
    for (String str : strings) {
        result.append(str);
    }
    return result.toString();
}



Methods for Measuring Program Runtime

1. Time how long a program takes to execute.
○ Unix time command
○ Various Java classes that can be used to create timers
○ Pros:
○ Cons:
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Methods for Measuring Program Runtime

1. Time how long a program takes to execute.
○ Unix time command
○ Various Java classes that can be used to create timers
○ Pros: Easy to measure, intuitive
○ Cons: Varies depending on computer, compiler, cosmic rays, etc

2. Count number of operations program makes.
○ Insert counters into code (e.g. How many add operations?)
○ Pros: Doesn't depend on computer specs
○ Cons: Not the actual runtime, varies on input

3. Symbolize execution as a function
○ Analyze code line by line and give an estimate of runtime in terms of input
○ Pros: Doesn't depend on computer specs or inputs. Tells how program scales
○ Cons: Doesn't tell you actual times



A Tale of Efficiency: Convert String[] into one String

● Option A: Use String concatenation. (e.g. “hello ” + “world”)
private static String stringConcat(String[] strings) {
    String result = "";
    for (String str : strings) {
        result += str;
    }
    return result;
}

● Option B: Use a StringBuilder. It has an append(String str) method.
private static String stringBuilderConcat(String[] strings) {
    StringBuilder result = new StringBuilder();
    for (String str : strings) {
        result.append(str);
    }
    return result.toString();
}
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Number of strings concatenated: 1000

String concatenation: 34 ms

StringBuilder concatenation: 0 ms

===========
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String concatenation: 582 ms

StringBuilder concatenation: 1 ms
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Number of strings concatenated: 50000

String concatenation: 38812 ms
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Number of strings concatenated: 100000

String concatenation: 173798 ms

StringBuilder concatenation: 12 ms
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Asymptotic Notation

● Cost function: how runtime (or space usage) changes with input size
● Order of growth: “shape” of the cost function
● Asymptotic notation describes orders of growth by providing bounds.



Formal Definitions



Formal Definitions of Big-O



Formal Definition of Big-O in English
https://www.desmos.com/calculator/yitz7onvuj

Think of it this way:  if you're trying to prove that one function is asymptotically 
bounded by another [f(n) is in O(g(n))], you're allowed to multiply them by positive 
constants in an attempt to stuff one underneath the other.  You're also allowed to 
move the vertical line (N) as far to the right as you like (to get all the crossings 
onto the left side).  We're only interested in how the functions behave as n shoots 
off toward infinity.



Big-O Challenge

Suppose we have some performance measurement F(n), where n is the size of 
our problem. 

● Suppose F(n) = 2n + 1. Find a simple g(n) and corresponding k and N



Formal Definitions of Big-Ω



Formal Definition of ϴ



Some Tips

● In general, we do not care about constant factors
○ O(2n) ∈ O(n)

● n3 + 10n2 + 20n + 7 ∈ O(n3)

○ Because we are looking at limiting behavior with a really big n, we 

typically only include the dominating term (i.e. the largest and slowest 

term)

● n ∈ O(n3)

○ Big-O can be misleading as it is just an upper bound



Table of Important Big-O Sets

Function Common Name

O(1) Constant time

⊂ O(lg N) logarithmic

⊂ O(N) linear

⊂ O(N lg N) N lg N or linearithmic

⊂ O(N2) Quadratic

⊂ O(2N) Exponential



Analyzing Code Samples



Nested For Loops (http://shoutkey.com/shall)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)). By simple, we mean 
there should be no unnecessary multiplicative constants or additive terms.

public static void printParty(int n) {
for (int i = 0; i <= n; i++) {

for (int j = 0; j < i; j++) {
System.out.println("free");

}
}

}  

A. 1             D. N lg N

B. lg N        E. N2

C. N            F. Something

                       else
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for (int j = 0; j < i; j++) {
System.out.println("free");

}
}
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Nested For Loops: The Sequel (http://shoutkey.com/rust)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N)). By simple, we mean 
there should be no unnecessary multiplicative constants or additive terms.

public static void printParty2(int n) {
for (int i = 1; i <= n; i = i * 2) {

for (int j = 0; j < i; j += 1) {
System.out.println("kekistan");

}
}
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Nested For Loops: The Sequel

public static void printParty2(int n) {
for (int i = 1; i <= n; i = i * 2) {

for (int j = 0; j < i; j += 1) {
System.out.println("kekistan");

}
}

}  



Recursion (http://shoutkey.com/just)

Find a simple f(N) such that the runtime R(N) ∈ Θ(f(N))

Using your intuition, bound the runtime of this code as a function of N? 

A. 1
B. log N
C. N
D. N2

E. 2N

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1)
}



Recursion

public static int f3(int n) {
   if (n <= 1) 

return 1;
   return f3(n-1) + f3(n-1)
}



A Trick Question (http://shoutkey.com/peanut)
Let R(N) be the runtime of the code below as a function of N. 

● What is the order of growth of R(N)?
A. R(N) ∈ Θ(1)                       C. R(N) ∈ Θ(N2)
B. R(N) ∈ Θ(N)                      D. Something else. 

public boolean dupFinder(int[] a) {
int N = a.length;
for (int i = 0; i < N; i += 1) {

    for (int j = i + 1; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
            }
    }

}
return false;

}
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A Trick Question
Let R(N) be the runtime of the code below as a function of N. 

● What is the order of growth of R(N)?
○ It depends! In the worst case, R(N) ∈ Θ(N2)
○ BUT, for an array of all equal elements, R(N) ∈ Θ(1)

public boolean dupFinder(int[] a) {
int N = a.length;
for (int i = 0; i < N; i += 1) {

    for (int j = i + 1; j < N; j += 1) {
            if (a[i] == a[j]) {
                return true;
            }
    }

}
return false;

}



Rumour Has It

Big O is for worst case.
Big Ω is for best case.

Big ϴ is for average case.



Rumour Has It So Wrong

Big O is for worst case.
Big Ω is for best case.

Big ϴ is for average case.
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The Truth of the Matter

● You can use asymptotic notation (Big O, Big Ω, and Big 
ϴ) to express the best case, worst case, or average case.

● Asymptotic notation is just a bound on functions. IT DOES 
NOT SAY WHAT THE FUNCTIONS MEAN. 



Question (http://shoutkey.com/chives)
Which statement gives you more information about the neighborhood?

A. Every house in the neighborhood is worth less than $1,000,000.
B. The most expensive house in the neighborhood is worth $1,000,000.
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Question (http://shoutkey.com/yellow)

Which statement gives you more information about the function R(N)?

A. R(N) ∈ O(N2).
B. In the worst case, R(N) ∈ Θ(N2).



Answer

Which statement gives you more information about the function R(N)?

A. R(N) ∈ O(N2).
B. In the worst case, R(N) ∈ Θ(N2).

Note: Even though B is a stronger statement than A, for convenience, people 
usually just say A.

Example:

● Runtime of Selection Sort is O(N2).
● This statement is true, but runtime is also O(N5), and O(2N).
● Stronger (but wordier) statement: In the worst case, runtime of Selection 

Sort is Θ(N2).



Warning! Common Fallacies Ahead





Repeat After Me



Repeat After Me

There is no magic shortcut for these problems (well… usually)

● Runtime analysis often requires careful thought.
● This is not a math class, though we’ll expect you to know these:

○ 1 + 2 + 3 + … + N = N(N+1)/2 = Θ(N2)   ← Sum of First N Numbers 

○ 1 + 2 + 4 + 8 + … + N = 2N - 1 = Θ(N)    ← Sum of First N Powers of 2

● Strategies
○ Write out examples (use charts)

○ Draw pictures (recursion trees)



Citations
● Encapsulation anecdote by Jonathan Shewchuck.

● Most slides based on Josh Hug’s offering of 61B.


