
CS 61B Small Group Tutoring
Summer 2020 Section 11: MSTs Worksheet 11

1 Minimum Spanning Tree
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(a) Given the graph above, run Kruskal’s and Prim’s algorithm to determine the minimum spanning tree of
this graph. For Prim’s algorithm, assume we start at node A and fill in the following chart including the
value cost(v) for all vertices v for that iteration as well as which node was popped off of the fringe for
that iteration. (Note: Ties are broken in alphabetical order)

Solution: To find the minimum spanning tree, both Kruskal’s and Prim’s algorithm apply the cut prop-
erty, which states that the shortest edge between two disjoint sets of nodes must be in the minimum
spanning tree.

Prim’s algorithm starts at a node, and we’ll use A for this example. Now, we identify the smallest edge
out from A, which is the one to B, and add it to the minimum spanning tree because the two nodes are
not already connected. We perform the same operation on our new set of nodes, and the smallest edge
out is from A to C. After that, our set of connected nodes includes A, B, and C, and the smallest edge
out from that is the one between C and E, and so on and so forth until we end up with the resulting
image. We can accordingly fill in the chart below:

v init Pop a Pop b Pop c Pop e Pop d Pop f Pop g
cost(a) 0 0 0 0 0 0 0 0
cost(b) ∞ 2 2 2 2 2 2 2
cost(c) ∞ 3 3 3 3 3 3 3
cost(d) ∞ 3 3 3 3 3 3 3
cost(e) ∞ ∞ 3 1 1 1 1 1
cost(f) ∞ ∞ ∞ 6 6 6 6 6
cost(g) ∞ ∞ ∞ ∞ ∞ ∞ 9 9
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(b) Run Kruskal’s algorithm on the same graph.

Solution: To employ Kruskal’s algorithm on this graph, we’ll start with all the nodes disconnected.
From there, we locate that smallest edge, which is the one between C and E. Since those two nodes are
not already connected, we know that this edge must be in the minimum spanning tree. Using the same
logic, we add the edge between A and B. In the next iteration, we have three edges with weight 3. We
can see that adding the edge between A and D connects disjoint sets of nodes. Now, we add the edge
between A and C. Afterwards, the next smallest edge is between B and E, but there is already a path
from B to E, so that edge is not in the minimum spanning tree. Anyways, the final edges to the graph
are illustrated using the same logic as before.

(c) Does Kruskal’s algorithm for finding the minimum spanning tree work on graphs with negative edge
weights? Does Prim’s?

Solution: Yes, both algorithms work with negative edge weights because the cut property still applies.

(d) True or False: A graph with unique edge weights has a unique minimum spanning tree.

Solution: True. This can be proved using the cut property. Unique edge weights implies that for every
cut, there exactly one minimum-weighted edge.

s

CS 61B, Summer 2020, Worksheet 11 2



2 Fiat Lux

After graduating from Berkeley with solid understanding of CS61B topics, Josh became a billionaire and
wants to build power stations across Berkeley campus to help students survive from PG&E power outages.
Josh want to minimize his cost, but due to the numerous power outages when he took CS61B, he did not
learn anything about Prim’s or Kruskal’s algorithm and he is asking for your help! We must meet the
following constrains to power the whole campus:

• There are V locations where Josh can build power stations, and it costs vi dollars to build a power
station at the ith position.

• There are E positions we can build wires and it cost ei j to build a wire between location i and j.

• All locations must have a power station itself or be connected to another position with power station.

• ei j << vi,∀i, j

Use the Prim’s or Kruskal’s algorithm taught in class to find a strategy that will minimize the cost while still
fulfilling the constrains above.

Solution:

As the question suggests, this problem can be reduced to a graph problem where we want to have nodes
either be marked themselves or connected to a marked one. To do so, we first create a graph with one vertex
per location with edges between them corresponding to the cost of building a wire between them.

To also account for the cost to build the power stations (i.e. the value of each node), we will add on dummy
node and connect it to every node in our graph. The weight of the edge from the dummy node to node ni

is vi, which is the cost to build the power station at location i. Now we can simply run Kruskal’s or Prim’s
algorithm to find the MST in this graph. For all edges in the MST we find, if the edge connects ni to the
dummy node, we will build the station at position i; if the edge connects two nodes ni,n j in the original
graph, we will build a wire between those location i and j.

For example, if originally we have five locations, and we are given the value vi and ei j, we can first build the
graph on the left hand side. Thereafter, we can add a dummy node as mentioned above and reconstruct the
graph to obtain the graph on the right hand side. Then, we can run Kruskal’s or Prim’s algorithm on the new
graph and obtain a MST (drawn in blue). In this case, the best strategy is to build power station at n1,n2,n5
and build wire to connect n1 with n3, n2 with n4;

v1 = 1

v2 = 2

v3 = 3

v4 = 4

v5 = 52

1

10

61
n1

n2

n3

n4

n5

dummy

2

1

10
6

1

2 4 5

1

3

CS 61B, Summer 2020, Worksheet 11 3


	Minimum Spanning Tree
	Fiat Lux

