
CS 61BL Final Exam Review
Summer 2021 Monday August 9, 2021

1 Hashing Asymptotics
Suppose we set the hashCode and equals methods of the ArrayList class as follows.

1 /* Returns true iff the lists have the same elements in the same ordering */

2 @Override

3 public boolean equals(Object o) {

4 if (o == null || o.getClass() != this.getClass() || o.size() != this.size()) {

5 return false;

6 }

7 ArrayList<T> other = (ArrayList<T>) o;

8 for (int i = 0; i < this.size(); i++) {

9 if (other.get(i) != this.get(i)) {

10 return false;

11 }

12 }

13 return true;

14 }

15

16 /* Returns the sum of the hashCodes in the list. Assume the sum is a cached instance variable. */

17 @Override

18 public int hashCode() {

19 return sum;

20 }

(a) Give the best and worst case runtime of hashContents in Θ(.) notation as a

function of N, where N is initial size of the list. Assume the length of set's

underlying array is N and the set does not resize. Assume the hashCode of an

Integer is itself. Admittedly, the ArrayList class does not have the method

removeLast, but assume it does for this problem, and is implemented the same

as in Project 1. Finally, assume f accepts two ints, returns an unknown int,

and runs in constant time.

1 static void hashContents(HashSet<ArrayList<Integer>> set, ArrayList<Integer> list) {

2 if (list.size() <= 1) {

3 return;

4 }

5 int last = list.removeLast();

6 list.set(0, f(list.get(0), last));

7 set.add(list);

8 hashContents(set, list);

9 }

Best Case: Θ(), Worst Case: Θ()

2 Final Exam Review

(b) Continuing from the previous part, how can we define f to ensure the worst

case runtime? How can we define f to ensure the best case runtime? There

may be multiple possible answers.

1. Worst case:

1 int f(int first, int last) {

2 return __________________________;

3 }

2. Best case:

1 int f(int first, int last) {

2 return __________________________;

3 }

Final Exam Review 3

2 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: Θ(), Worst Case: Θ()

(b) We can only swap adjacent elements in selection sort.

Best Case: Θ(), Worst Case: Θ()

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(), Worst Case: Θ()

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: Θ(), Worst Case: Θ()

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: Θ(), Worst Case: Θ()

• There is exactly 1 inversion

Best Case: Θ(), Worst Case: Θ()

• There are exactly (N2 −N)/2 inversions

Best Case: Θ(), Worst Case: Θ()

4 Final Exam Review

3 Dijkstra’s and A*
Given the graph below, answer the following questions:

(a) What edges are in the shortest paths tree (SPT) starting from L?

(b) Decreasing which edge by 2 changes the SPT from L? Assume the SPT tree

was created by running Dijkstra’s from L. There may be more than one correct

answer, determine all!

(c) We will define the heuristic of a vertex v as the shortest distance from v to I.

For instance, the heuristic of T is 3.

Given that I is the end vertex, what start vertex would visit the most vertices

on one run of A*? Recall that A* terminates after removing the goal. If

multiple answers produce the maximum, select all.

Final Exam Review 5

4 Prim’s
(a) In an arbitrary graph, Prim’s can change the priority of a vertex v in the

priority queue a maximum of times and a minimum of times.

Assume v is not the start vertex and the graph is connected and undirected.

Give tight bounds specific to v. Assume we set all priorities to infinity initially.

(b) Suppose we run Prim’s from A on the graph below.

Fill in the missing edges in the graph to the right so that

1. The priority of C is changed the maximum number of times, i.e. the

first blank from above.

2. The priority of every vertex is changed the minimum number of times,

i.e. the second blank from above.

6 Final Exam Review

5 Kruskal’s

(a) We want to run Kruskal’s, but we have no cycle detection, so we terminate upon

inserting V − 1 edges. Will this produce a valid MST on the graph above? If

not, determine which edge(s) need to be changed, and to what. If there are

many possibilities, choose the one that involves the minimum added/removed

weight.

Assume ties are broken alphabetically, and edges are written in alphabetical

order, and compared as such. For instance, if edges (A, Z) and (E, H) are

equal, (A, Z) would be chosen before (E, H).

(b) After completing the previous part, Sohum wondered if it’s possible to run

Kruskal’s with limited cycle detection. More specifically, he pondered: what if

we can only detect a maximum of k cycles during one run of Kruskal’s?

Looking at the specific instance of a 6 vertex graph, what is the minimum

value of k for which we can ensure that Kruskal’s will always work?

Final Exam Review 7

6 Graph Algorithm Design
Given a undirected, weighted graph G with positive, integer edge weights, we

want to find a path from u to v that minimizes the total cost. For each “catch”

below, find the path of optimal cost no slower than O(ElogV).

(a) Excluding the start and end vertex, we partition the vertices into 5 subsets,

and we must visit vertices in order of their subset. That is, if we are in subset

k, the next vertex we visit must be in subset k + 1.

(b) We must visit two designated vertices s and k on our path.

(c) If two paths from u to v are of the same cost, we will choose the path with

fewer edges.

(d) Instead of starting from u and ending at v, we can start from any vertex in a

subset of vertices and end at any vertex in a subset of vertices. Each subset is

of size k.

8 Final Exam Review

7 Yggdrasil (Heaps)
This problem was taken from Spring 2019 Midterm 2.

This is a very challenging problem. Write a function that takes an integer k and

a min-heap h (in tree representation) and removes the k smallest values and

returns them organized into valid perfectly balanced BST. For example, if we

call heapToBBST(7, h) on the MinHeap in the left figure, it returns the Tree in the

middle figure, and as a side-effect, h becomes the MinHeap in the right figure.

This should be done in-place, i.e., reusing the TreeNodes from the min-heap. Your

function should complete in O(NlogN) time, where N is the number of items in the

min-heap, and use no more than O(logN) additional memory while it is running.

For full credit, it must work for arbitrary values for k, but you can earn almost full

credit if your solution works for k = 2H–1 (i.e. powers of 2 minus 1).

1 public class TreeNode {

2 public int item;

3 public TreeNode left;

4 public TreeNode right;

5 }

6 public class MinHeap {

7 /* Even though a MinHeap is made up of TreeNodes, the instance

8 * variables are private. You cant directly access them. */

9

10 /* removes the minimum node and returns it */

11 public TreeNode removeMin() { /* ... */ }

12 }

13 public static TreeNode heapToBBST(int k, MinHeap h) {

14 if (k == 0) {

15 return null;

16 }

17 _________________________________

18 _________________________________

19 _________________________________

20 _________________________________

21 _________________________________

22 _________________________________

23 _________________________________

24 _________________________________

25 _________________________________

26 }

	Hashing Asymptotics
	Sorted Runtimes
	Dijkstra's and A*
	Prim's
	Kruskal's
	Graph Algorithm Design
	Yggdrasil (Heaps)

