
CS 61BL Final Exam Review

Summer 2021 Monday August 9, 2021

1 Hashing Asymptotics
Suppose we set the hashCode and equals methods of the ArrayList class as follows.

1 /* Returns true iff the lists have the same elements in the same ordering */

2 @Override

3 public boolean equals(Object o) {

4 if (o == null || o.getClass() != this.getClass() || o.size() != this.size()) {

5 return false;

6 }

7 ArrayList<T> other = (ArrayList<T>) o;

8 for (int i = 0; i < this.size(); i++) {

9 if (other.get(i) != this.get(i)) {

10 return false;

11 }

12 }

13 return true;

14 }

15

16 /* Returns the sum of the hashCodes in the list. Assume the sum is a cached instance variable. */

17 @Override

18 public int hashCode() {

19 return sum;

20 }

(a) Give the best and worst case runtime of hashContents in ⇥(.) notation as a

function of N, where N is initial size of the list. Assume the length of set�s

underlying array is N and the set does not resize. Assume the hashCode of an

Integer is itself. Admittedly, the ArrayList class does not have the method

removeLast, but assume it does for this problem, and is implemented the same

as in Project 2b. Finally, assume f accepts two ints, returns an unknown int,

and runs in constant time.

1 static void hashContents(HashSet<ArrayList<Integer>> set, ArrayList<Integer> list) {

2 if (list.size() <= 1) {

3 return;

4 }

5 int last = list.removeLast();

6 list.set(0, f(list.get(0), last));

7 set.add(list);

8 hashContents(set, list);

9 }

Best Case: ⇥(), Worst Case: ⇥()

31

N a 2

Explanation

IP
last E E

list L

set o IT

2 two possibilities

worst 1go to bucket o OCN
3 care

2 go to another
best bucket that is
case empty i

WORST CASE

1 2 t 13 t N T t I

1 2 3 4 t N

GO Nz

BEST CASE

It I t t t
Saca

2 Final Exam Review

(b) Continuing from the previous part, how can we define f to ensure the worst

case runtime? How can we define f to ensure the best case runtime? There

may be multiple possible answers.

1. Worst case:

1 int f(int first, int last) {

2 return __________________________;

3 }

2. Best case:

1 int f(int first, int last) {

2 return __________________________;

3 } first t last I
j

gig

Explanation
f 1 5 BEST CASE worst case

add I samebucket

list L o 3 to the our hashate
sum as staysthesame

Set 0 over time
we record

sumof the list2 EEL
man
Should never

3
4

Final Exam Review 3

2 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N/100, we perform insertion sort

on them.

Best Case: ⇥(), Worst Case: ⇥()

(b) We can only swap adjacent elements in selection sort.

Best Case: ⇥(), Worst Case: ⇥()

(c) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: ⇥(), Worst Case: ⇥()

(d) We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.

Best Case: ⇥(), Worst Case: ⇥()

(e) We run an optimal sorting algorithm of our choosing knowing:

• There are at most N inversions

Best Case: ⇥(), Worst Case: ⇥()

• There is exactly 1 inversion

Best Case: ⇥(), Worst Case: ⇥()

• There are exactly (N2 �N)/2 inversions

Best Case: ⇥(), Worst Case: ⇥()

3 89
n as on it oo o as is a

case

iiiwin
ni OEI it
insertionsort IiiN N2 mergingreps n

runtime n
ne n

i
m i nn

in z neNot b

noon

wf Yoon
o 32764o i r s t s

an arras near

nypppgg.gg
neap sales

N N

n I 21 3 4 67 91011
idea run insertion sort until
we Rnsthe inversionrecallaninversionisanoutofplacepain

orinstanceintheaway

Czo isaninversionsince
220but2precedes o
2,4 isnotaninversionsince
2 4andapreatest

Runtimeat insertion son is Ocn D
atOCn N inversionsu oca

