
CS 61BL Heaps and Graphs
Summer 2021 Recurring Section 10: Tuesday August 2, 2021

1 Heaps of Fun
(a) Draw the Min Heap that results if we delete the smallest item from the heap.
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(b) Draw the Min Heap that results if we insert the elements 6, 5, 4, 3, 2 into an

empty heap.
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(c) Assume that we have a binary min-heap (smallest value on top) data structure

called MinHeap that has properly implemented the insert and removeMin meth-

ods. Draw the heap and its corresponding array representation after each of

the operations below:

1 MinHeap<Character> h = new MinHeap<>();

2 h.insert('f');
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3 h.insert('h');

4 h.insert('d');

5 h.insert('b');

6 h.insert('c');

7 h.removeMin();

8 h.removeMin();

Solution:
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(d) Your friendly TA Sadia challenges you to quickly implement an integer max-

heap data structure. However, you already have your MinHeap and you don’t

feel like writing a whole second data structure. Can you use your min-heap
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to mimic the behavior of a max-heap? Specifically, we want to be able to get

the largest item in the heap in constant time, and add things to the heap in

Θ(log n) time, as a normal max heap should.

Hint : Although you cannot alter them, you can still use methods from MinHeap.

Yes. For every insert operation, negate the number and add it to the min-heap.

For a removeMax operation call removeMin on the min-heap and negate the

number returned. Any number negated twice is itself (with one exception in

Java, −2−31), and since we store the negation of numbers, the order is now

reversed (what used to be the max is now the min).

2 Graphs
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(a) Write the graph above as an adjacency matrix, then as an adjacency list. What

would be different if the graph were undirected instead?

Matrix:

A B C D E F G <- end node

A 0 1 0 1 0 0 0

B 0 0 1 0 0 0 0

C 0 0 0 0 0 1 0

D 0 1 0 0 1 1 0

E 0 0 0 0 0 1 0

F 0 0 0 0 0 0 0

G 0 0 0 0 0 1 0

ˆ start node

List:

A: {B, D}

B: {C}

C: {F}

D: {B, E, F}

E: {F}

F: {}

G: {F}

For the undirected version of the graph, the representations look a bit more

symmetric. For your reference, the representations are included below:
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Matrix:

A B C D E F G <- end node

A 0 1 0 1 0 0 0

B 1 0 1 1 0 0 0

C 0 1 0 0 0 1 0

D 1 1 0 0 1 1 0

E 0 0 0 1 0 1 0

F 0 0 1 1 1 0 1

G 0 0 0 0 0 1 0

ˆ start node

List:

A: {B, D}

B: {A, C, D}

C: {B, F}

D: {A, B, E, F}

E: {D, F}

F: {C, D, E, G}

G: {F}

(b) Write the order in which DFS pre-order graph traversal would visit nodes in

the directed graph above, starting from vertex A. Break ties alphabetically.

Do the same for DFS post-order and BFS.

DFS preorder: ABCFDE (G)

DFS postorder: FCBEDA (G)

BFS: ABDCEF (G)

Explanations

DFS preorder and postorder: To compute this, we maintain a stack of

nodes, and a marked set. As soon as we add something to our stack, we note

the down for preorder. The top node in our stack represents the node we are

currently on, and the marked set represents nodes that have been visited. After

we add a node to the stack, we visit its lexicographically next unmarked child.

If there is none, we pop the topmost node from the stack and note it down

for postorder. Note that there are two ways DFS could run: with restart or

without; DFS with restart is the version where if we have exhausted our stack,

and still have unmarked nodes left, we restart on the next unmarked node.

Stack (bottom-top), MarkedSet, Preorder, Postorder.

A. {A}. A. -

AB. {AB}. AB. -

ABC. {ABC}. ABC. -

ABCF. {ABCF}. ABCF. -

ABC. {ABCF}. ABCF. F

AB. {ABCF}. ABCF. FC.

A. {ABCF}. ABCF. FCB.

AD. {ABCFD}. ABCFD. FCB.

ADE. {ABCFDE}. ABCFDE. FCB.

AD. {ABCFDE}. ABCFDE. FCBE.

A. {ABCFDE}. ABCFDE. FCBED.

\-. {ABCFDE}. ABCFDE. FCBEDA.

If DFS restarts on unmarked nodes, the following happens in the

last line. Otherwise, we do not proceed further.

G. {ABCFDEG}. ABCFDEG. FCBEDAG.
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BFS: Start at the provided start node. Note it down, and mark it. Now,

consider all nodes that are 1-hop (i.e. one edge) away from the start node.

Write all of them down, and mark all of them. Next, consider all unmrked

nodes that are 1-hop away from the nodes that were 1-hop away from the start

(i.e., 2 hops away from the start). And so on. Note that unlike DFS, BFS uses

a queue.

BFS, MarkedSet.

A. {A}.

A BD. {ABD}.

A BD CEF. {ABDCEF}.

If BFS restarts, the following happens at the end. Otherwise, we do

not proceed further..

A BD CEF (G). {ABDCEFG}.
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3 Graph Conceptuals
Answer the following questions as either True or False and provide a brief expla-

nation:

1. If a graph with n vertices has n− 1 edges, it must be a tree.

False. The graph must be connected.

2. Every edge is looked at exactly twice in every iteration of DFS on a connected,

undirected graph.

True. The two vertices the edge is connecting will look at that edge when

it’s their turn.

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the

start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always

less than 2.

True. Suppose this was not the case. Then, we could have a vertex 2 edges

away and a vertex 4 edges away in the fringe at the same time. But, the only

way to have a vertex 4 edges away is if a vertex 3 edges away was removed

from the fringe. We see this could never occur because the vertex 2 edges

away would be removed before the vertex 3 edges away!

4. Given a fully connected, directed graph (a directed edge exists between every

pair of vertices), a topological sort can never exist.

False. Consider the graph constructed as follows: for all vertices i, j such

that i < j, draw a directed edge from i to j. A valid topological ordering of

this graph is simply enumerating the vertices: 1, 2, 3, . . . .N .
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