
CS 61BL Sorting
Summer 2021 Recurring Section 12: Tuesday August 9, 2021

1 Mechanical Sorts
Show each pass of the following sorts on the following unordered list of integers

(duplicate items are denoted with letters):

2, 1, 8, 4A, 6, 7, 9, 4B

1. Insertion Sort

2. Selection Sort

3. Merge Sort

4. Heapsort. Write each swap of the bottom-up heapification process and then

the result of each removeMax call. Note that if both children are equal, sink to

the left.



2 Sorting

5. Quicksort

2 Sorting Runtimes
Fill out the best-case and worst-case runtimes for these sorts as well as whether

they are stable or not in the table below.

Best-Case Runtime Worst-Case Runtime Stability

Selection Sort

Insertion Sort

Heapsort

Mergesort

Quicksort

Counting Sort

LSD Radix Sort

MSD Radix Sort



Sorting 3

3 You Choose
1. We have a system running insertion sort and we find that it’s completing

faster than expected. What could we conclude about the input to the sorting

algorithm?

2. Give a 5 element array such that it elicits the worst case runtime for insertion

sort.

3. Give some reasons why someone would use merge sort over quicksort.

4. Which sorts never compare the same two elements twice?

5. When might you decide to use radix sort over a comparison sort, and vice

versa?



4 Sorting

4 Challenge: Bears and Beds
The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help

them place their customers in the best possible homes to improve their experience.

They are currently in their alpha stage so their only customers (for now) are bears.

Now, a little known fact about bears is that they are very, very picky about their

bed sizes: they do not like their beds too big or too little - they like them just right.

Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.

The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-

sponding but also unknown sizes (not necessarily in the same order), return a list

of Bears and a list of Beds such that that the ith Bear in your returned list of Bears

is the same size as the ith Bed in your returned list of Beds. Bears can only be

compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:

Your algorithm should run in O(N logN) time on average. It may be helpful to

figure out the naive O(N2) solution first and then work from there.


	Mechanical Sorts
	Sorting Runtimes
	You Choose
	Challenge: Bears and Beds

