Disjoint Sets, a.k.a. Union Find

In lab, we discussed the Union Find ADT. Today, we will use union find terminology so that you have seen both.

The naive implementation was maintaining a record of every single connection. Improvements made were:

- Keeping track of sets rather than connections (QuickFind)
- Tracking set membership by recording parent not set # (QuickUnion)
- Union by Size (WeightedQuickUnion)
- Path Compression (WeightedQuickUnionWithPathCompression)

We will focus on attention on the last two, union by size and path compression.

(a) Assume we have nine items, represented by integers 0 through 8. All items are initially unconnected to each other. Draw the union find tree, draw its array representation after the series of `connect()` and `find()` operations, and write down the result of `find()` operations using `WeightedQuickUnion` without path compression. Break ties by choosing the smaller integer to be the root.

Note: `find(x)` returns the root of the tree for item `x`.

```plaintext
connect(2, 3);
connect(1, 2);
connect(5, 7);
connect(8, 4);
connect(7, 2);
find(3);
connect(0, 6);
connect(6, 4);
connect(6, 3);
find(8);
find(6);
```

`find()` returns 2, 2, 2 respectively.
The array is [2, 2, -9, 2, 0, 2, 0, 5, 4].
(b) \textit{Extra:} Repeat the above part, using \textbf{WeightedQuickUnion} with \textbf{Path Compression}.

\texttt{find()} returns 2, 2, 2 respectively. The array is $[2, 2, -9, 2, 2, 2, 2, 5, 2]$.

(c) What is the runtime for "connect" and "isConnected" operations using our Quick Find, Quick Union, and Weighted Quick Union ADTs? Can you explain why the Weighted Quick union has better runtimes for these operations than the regular Quick Union?

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>Quick Find</th>
<th>Quick Union</th>
<th>WQU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect</td>
<td>$\mathcal{O}(N)$</td>
<td>$\mathcal{O}(N)$</td>
<td>$\mathcal{O}(\log N)$</td>
</tr>
<tr>
<td>IsConnected</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(N)$</td>
<td>$\mathcal{O}(\log N)$</td>
</tr>
</tbody>
</table>

The Weighted Quick Union has better run times because by picking the smaller tree to be the child, we can achieve shorter overall heights in our underlying tree. This means that for any child, traversing up the tree to find its root, or its set representative, is limited to this shortened tree height. For both our standard Quick Union and Weighted Quick Union, the time it takes to connect two items depends on this height, as it requires checking the roots of the current items and then changing one to be the other (if they’re not already connected). Then the time it takes to find the root of the current element is proportional to the time it takes to connect two items. Similarly, the time it takes to check if two items are connected relies on finding the roots of the current elements.

Not included in this chart is the WQU with path compression. While the proof for it's runtime is out of scope for this class, it achieves amortized constant runtime for both of Connect and isConnected.
2 Asymptotics

(a) Order the following big-O runtimes from smallest to largest.

\[O(\log n), O(1), O(n^3), O(n^2 \log n), O(n), O(n!), O(2^n), O(n^2 \log n) \]

\[O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^2 \log n) \subset O(n^3) \subset O(2^n) \subset O(n!) \subset O(n^n) \]

(b) Are the statements in the right column true or false? If false, correct the asymptotic notation (Ω(·), Θ(·), O(·)). Be sure to give the tightest bound.

Ω(·) is the opposite of O(·), i.e. \(f(n) \in \Omega(g(n)) \iff g(n) \in O(f(n)) \).

\[
\begin{align*}
f(n) &= 20501 & g(n) &= 1 & f(n) \in O(g(n)) \\
f(n) &= n^2 + n & g(n) &= 0.000001n^3 & f(n) \in \Omega(g(n)) \\
f(n) &= 2^{2n} + 1000 & g(n) &= 4^n + n^{100} & f(n) \in O(g(n)) \\
f(n) &= \log(n^{100}) & g(n) &= n \log n & f(n) \in \Theta(g(n)) \\
f(n) &= n \log n + 3^n + n & g(n) &= n^2 + n + \log n & f(n) \in \Omega(g(n)) \\
f(n) &= n \log n + n^2 & g(n) &= \log n + n^2 & f(n) \in \Theta(g(n)) \\
f(n) &= n \log n & g(n) &= (\log n)^2 & f(n) \in O(g(n)) \\
\end{align*}
\]

i) False. Although this bound is technically correct, it is NOT the tightest bound. \(\Theta(\cdot) \) is a better bound.

ii) False, \(O(\cdot) \). Even though \(n^3 \) is strictly worse than \(n^2 \), \(n^2 \) is still in \(O(n^3) \) because \(n^2 \) is always as good as or better than \(n^3 \) and can never be worse.

iii) False. Again, technically correct, but it is not a tight bound. \(\Theta(\cdot) \) is a better bound.

iv) False, \(O(\cdot) \).

v) True.

vi) True.

vii) False, \(\Omega(\cdot) \).

(c) Give the worst case and best case runtime in terms of \(M \) and \(N \). Assume \texttt{ping} is in \(\Theta(1) \) and returns an \texttt{int}.

\begin{verbatim}
1 for (int i = N; i > 0; i--) {
2 for (int j = 0; j <= M; j++) {
3 if (ping(i, j) > 64) break;
4 }
5 }
\end{verbatim}

Worst: \(\Theta(MN) \), Best: \(\Theta(N) \) We repeat the outer loop \(N \) times, no matter what. For the inner loop, we see the amount of times we repeat it depends on the result of \texttt{ping}. In the best case, it returns true immediately, such that we'll only ever look at the inner loop once and then break the inner loop. In the worst case, \texttt{ping} is always false and we complete the inner loop \(M \) times for every value of \(N \) in the outer loop.
(d) Below we have a function that returns true if every int has a duplicate in the
array, and false if there is any unique int in the array. Assume sort(array) is
in \(\Theta(N \log N) \) and returns array sorted.

```java
public static boolean noUniques(int[] array) {
    array = sort(array);
    int N = array.length;
    for (int i = 0; i < N; i += 1) {
        boolean hasDuplicate = false;
        for (int j = 0; j < N; j += 1) {
            if (i != j && array[i] == array[j]) {
                hasDuplicate = true;
            }
        }
        if (!hasDuplicate) return false;
    }
    return true;
}
```

1. Give the worst case and best case runtime where \(N = \text{array.length} \).

 Its runtime is \(\Theta(N \log N + N^2) = \Theta(N^2) \) for the worst case the if statement
 always sets \(x \) to true. The best case is if we don’t set \(x \) to be true in
 the very first loop, which allows us to only go through the entire array
 once giving us \(\Theta(N \log N + N) = \Theta(N \log N) \).

2. Try to come up with a way to implement noUniques() that runs in
 \(\Theta(N \log N) \) time. Can we get any faster?

 We should rely on the fact that a sorted array means all duplicates will be
 adjacent. curr represents the current item we are checking, and we check
 the item after curr (since our array is sorted) to see if a duplicate exists.
 There is a possible \(\Theta(N) \) solution, but that involves data structures we
 haven’t covered yet!

```java
public static boolean noUniques(int[] array) {
    array = sort(array);
    int N = array.length;
    int curr = array[0];
    boolean unique = true;
    for (int i = 1; i < N; i += 1) {
        if (curr == array[i]) {
            unique = false;
        } else if (unique) {
            return false;
        } else {
            unique = true;
            curr = array[i];
        }
    }
}
```
return !unique;
}
3 Extra: Finish the Runtimes

Below we see the standard nested for loop, but with missing pieces!

```java
for (int i = 1; i < ______; i = ______) {
    for (int j = 1; j < ______; j = ______) {
        System.out.println("We will miss you next semester Akshit :(");
    }
}
```

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: $\Theta(N^2)$

```java
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < ______; j = ______) {
        System.out.println("This is one is low key hard");
    }
}
```

(b) Desired runtime: $\Theta(\log(N))$

```java
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < ______; j = ______) {
        System.out.println("This is one is mid key hard");
    }
}
```

Any constant would work here, 2 was chosen arbitrarily.

```java
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < 2; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
}
```

(c) Desired runtime: $\Theta(2^N)$

```java
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < ______; j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
```
Disjoint Sets and Asymptotics

for (int i = 1; i < N; i = i + 1) {
 for (int j = 1; j < Math.pow(2, i); j = j + 1) {
 System.out.println("This is one is high key hard");
 }
}

(d) Desired runtime: $\Theta(N^3)$

for (int i = 1; i < ______; i = i * 2) {
 for (int j = 1; j < N * N; j = ______) {
 System.out.println("yikes");
 }
}

for (int i = 1; i < Math.pow(2, N); i = i * 2) {
 for (int j = 1; j < N * N; j = j + 1) {
 System.out.println("yikes");
 }
}