
CS 61BL Midterm
Summer 2025 Friday, July 18th, 2025

Solutions last updated: 7/21/25
Print Your Name:

Print Your Student ID:

Print Student name to your left:

Print Student name to your right:

You have 110 minutes. There are 8 questions of varying credit. (100 points total)

Question: 1 2 3 4 5 6 7 8 Total
Points: 12 8 9 19 18 14 20 0 100

For questions with circular bubbles, select only
one choice (there is only one correct answer).

Unselected option (Completely unfilled)

Don’t do this (it will be graded as incorrect)

Only one selected option (completely filled)

For questions with square boxes, you may select
one or more choices (select all that apply).

You can select

multiple squares

Don’t do this (it will be graded as incorrect)

• Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple
answers or your answer is ambiguous, we will grade the worst interpretation.

• Unless otherwise specified, all data structures and algorithms behave according to their implementation
in lecture or lab, with no additional optimizations, and all relevant libraries have been imported.

• If an implementation detail (e.g. tiebreaking scheme, linked list topology) is relevant, it will be explicitly
noted in the question.

• You may write at most one statement per blank and you may not use more blanks than provided.

• Your answer will be reformatted according to the 61B/L style guidelines. For example, any method,
constructor, or if-statement requires at least three lines for the purposes of determining line count.

• You may not use ternary operators, lambdas, streams, or multiple assignment.

Read the honor code below and sign your name.

By signing below, I affirm that all work on this exam is my own work. I have not referenced any
disallowed materials, nor collaborated with anyone else on this exam. I understand that if I cheat on
the exam, I may face the penalty of an “F” grade and a referral to the Center for Student Conduct.

Sign your name:

Page 1 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q1 Amy’s Ponies (12 points)

Consider the code below.

public interface Magical {
 default void useMagic() {
 System.out.println("ZAP!");
 }
}

public class Horse {
 public static String species = "equus";
 private int weight;

 public Horse() {
 this.weight = 900;
 System.out.println("Horse");
 }

 public Horse(int weight) {
 this.weight = weight;
 System.out.println("Weight: " + weight);
 }

 public void neigh() {
 System.out.println("Neigh!");
 }
}

public class Unicorn extends Horse implements Magical {
 private int magicLevel;

 public Unicorn(int magicLevel, int weight) {
 super(weight);
 this.magicLevel = magicLevel;
 }

 @Override
 public void neigh() {
 System.out.println("Friendship!");
 }

 @Override
 public void useMagic() {
 System.out.println("MAGIC!");
 }
}

Page 2 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.1 (12 points)

Write what each line would output in the box to the right of that line.

If the line would result in a compiler error, leave the box blank and bubble “CE”. If the line would
result in a runtime error, leave the box blank and bubble “RE”. In either error case, continue as if
that line was never run.

If no output is printed, and the line would not error, write the word “nothing” (without the quotes).

The first few lines have been given for you.

System.out.println("Welcome!"); CE RE Welcome!

String to = "the"; CE RE nothing

int exam = "!"; CE RE

Horse appleJack = new Horse(); CE RE

Magical pinkiePie = new Horse(); CE RE

Unicorn twilight = new Unicorn(10, 50); CE RE

Magical sparkle = twilight; CE RE

Unicorn princessCelestia = new Horse(); CE RE

Unicorn rarity = (Unicorn) appleJack; CE RE

twilight.neigh(); CE RE

twilight.useMagic(); CE RE

Page 3 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Solution:

System.out.println("Welcome!"); CE RE Welcome!
String to = "the"; CE RE nothing
int exam = "!"; CE RE

Horse appleJack = new Horse(); CE RE Horse

Magical pinkiePie = new Horse(); CE RE

Unicorn twilight = new Unicorn(10, 50); CE RE Weight: 50

Magical sparkle = twilight; CE RE nothing

Unicorn princessCelestia = new Horse(); CE RE

Unicorn rarity = (Unicorn) appleJack; CE RE

twilight.neigh(); CE RE Friendship!

twilight.useMagic(); CE RE MAGIC!

Page 4 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q2 Addicted Drinkers of Tea (ADTs) (8 points)

Noah, Wilson, and Karen all want to buy boba for every Student in the world. For each of the below
subquestions, choose the best abstract data type (ADT) to use. Each subpart is independent from the other
subparts.

Your options for ADTs are List, Set, Map, Queue, or Stack.

Q2.1 (2 points) Noah would like to know how far different buildings (represented by the Building class)
are from CS61BobaShop. For example, Evans Hall is 61.8 kilometers from CS61BobaShop.

Write your chosen ADT, including the generic type(s):

Example answers: List<Building> or Map<Integer, String>

Map<Building, Double> or Map<Building, Float> or Map<Building, String>

Q2.2 (2 points) Students (represented by the Student class) who order last receive their boba first
(slightly unfair, yes). Wilson wants to keep track of the next student to receive their boba. Students
are tracked immediately after ordering.

Write your chosen ADT, including the generic type(s):

Stack<Student>

Q2.3 (2 points) Karen asks students (represented by the Student class) to go into a tree formation, where
every student represents a node. When distributing boba, Karen gives them to students in increasing
order of distance from the root node (breaking ties arbitrarily). As she distributes boba, Karen wants
to know which student is the next to receive boba.

Write your chosen ADT, including the generic type(s):

Queue<Student>

Q2.4 (2 points) Every time a student (represented by the Student class) mentions a boba type (repre-
sented by the Boba class), Michelle wants to know whether or not that boba type was mentioned
before by any student.

Write your chosen ADT, including the generic type(s):

Set<Boba>

Page 5 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Solution:

2.1 Since we want to be able to represent decimals, we use a map from Buildings to Doubles or
Floats. Note that it was not specified whether something like "61.8 kilometers" is valid, so we
also accept Map<Building, String> as a valid answer.

2.2 A Stack follows LIFO (last-in-first-out) order, which is exactly what we want here.

2.3 A Queue follows FIFO (first-in-first-out) order, which is required for a level order traversal. The
students who arrive earlier will be closer to the root of the tree, and will get their boba first.

2.4 Sets hold unique values with no copies and are perfect to use as a check off for previous mentions.
Note that we don’t actually care about which Student mentioned the particular Boba, only whether
the Boba was mentioned at all.

Page 6 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q3 Would You Like to Get Foo’d (9 points)

Q3.1 (9 points) Consider the following code:

 class Foo {
 private int x;
 public Foo(int x) {
 this.x = x;
 }
 }

Codey is considering implementations for boolean equals(Object obj) { ... } in Foo.

We instantiate three Foo objects foo1, foo2, foo3, each with an arbitrary (not necessarily unique)
value of x.

Then, we create a new Set according to some Set implementation, and insert foo1, foo2, and
foo3, in that order, into this newly created Set.

Select whether each equals implementation always, sometimes, or never results in the respective
final resulting Set after inserting all of foo1, foo2, foo3, in that order.

Note: Assume nonempty Sets call equals when checking for duplicates.

Final result after inserting all of foo1, foo2, foo3 into an empty Set

{foo1} {foo1, foo2} {foo1, foo2, foo3}equals implementation

return this == obj;

Always

Sometimes

Never

Always

Sometimes

Never

Always

Sometimes

Never

Foo f = (Foo) obj;
return ((this.x % 2)
 == (f.x % 2));

Always

Sometimes

Never

Always

Sometimes

Never

Always

Sometimes

Never

Foo f = (Foo) obj;
this.x = f.x;
return this.x == f.x;

Always

Sometimes

Never

Always

Sometimes

Never

Always

Sometimes

Never

Page 7 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Solution:

• For the first equals implementation, we are directly checking for matching memory addresses. Since
foo1, foo2, and foo3 are all separate objects (each made with a separate new keyword), none of
their memory addresses will be the same, and thus they will all be added to the Set.

• For the second equals implementation, the original intention was to check whether or not the x
instance variable is divisible by 2 (even versus odd). If foo1 and foo2 are both even, for example,
only foo1 would get added to the Set. If foo1 is even and foo2 is odd (or the other way around),
they would both get added to the Set. However, foo3 can never be added to the set if both foo1
and foo2 are already added.

However, Java’s % operator returns a negative value for negative numbers, so there are three choices
for x in foo1, foo2, foo3: even, odd, and negative odd. Since this is a bit of an obscure Java quirk
(staff forgot about this!), both Never and Sometimes are accepted for the third box of this equals
implementation.

• For the third equals implementation, we set the value of foo1.x to be whatever the value of foo1.x
was, and similarly for foo3. So the Set will only contain foo1, as both foo2 and foo3 will have the
same value of x as the foo1 in the Set.

Page 8 of 26

This content is protected and may not be shared, uploaded, or distributed.

This page intentionally left (mostly) blank

The exam continues on the next page.

Page 9 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q4 Field of Hopes and Dreams (19 points)

Lancer has built a devious forest maze in the shape of a Binary Search Tree, with an int label at each
node. As with standard BSTs, there are no duplicate labels.

Q4.1 (6 points)

Below is one of the BST mazes that Lancer could have built, with labels hidden by unknown
variables 𝑎 through ℎ (not in alphabetical order).

For the following logical comparisons, identify whether they are always, sometimes, or never true
depending on the values of the variables 𝑎 through ℎ.

𝑎

𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ

𝑎 > 𝑐

Always Sometimes Never

𝑏 == 𝑑

Always Sometimes Never

𝑑 < 𝑒

Always Sometimes Never

(𝑏 + 𝑑) > 𝑎

Always Sometimes Never

(𝑐 − ℎ) < 0

Always Sometimes Never

(𝑏 + 𝑑) == 0

Always Sometimes Never

Page 10 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Solution: 𝑎 > 𝑐: Following the BST property, all values to the right of 𝑎 must be greater than 𝑎. Thus,
𝑐 will never be less than 𝑎.

𝑏 == 𝑑: BSTs do not have duplicates.

𝑑 < 𝑒: The BST property forces all values left of 𝑎 to be less than 𝑎 and all values right of 𝑎 to be greater
than 𝑎. Since 𝑑 < 𝑎 and 𝑒 > 𝑎, then transitively, 𝑑 must always be less than 𝑒.

(𝑏 + 𝑑) > 𝑎: If 𝑏 was 2 and 𝑑 was 3 and 𝑎 was 4, the BST property would hold and (2 + 3) > 4.

(𝑐 − ℎ) < 0: The BST property forces ℎ to always be greater than 𝑐. Thus, (𝑐 − ℎ) will always be
negative.

(𝑏 + 𝑑 == 0): If 𝑏 was −3 and 𝑑 was 3, the BST property would hold and (𝑏 + 𝑑 == 0).

Page 11 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

Q4.2 (13 points) Lancer builds a ForestPathNode class to represent his BST maze.

 public class ForestPathNode {
 public int label;
 public ForestPathNode left;
 public ForestPathNode right;

 // ... methods not shown ...
 }

Suppose that the heroes know the correct label of their desired destination dest. Build a
ForestPathIterator that returns the correct path from the input node to the node with the given
label, using the directions "left" and "right".

Below is an example BST forest maze:

6

3 8

1 4 7 9

0 2 5 10

• A ForestPathIterator that takes in the root node of the above forest maze and a dest of 5
should exhaust its elements after next() returns "left", then "right", then "right".

• A ForestPathIterator that takes in the root node and a dest of 8 should exhaust its elements
after next() returns "right".

Assume that the given dest is in the maze.

Your solution should construct in Θ(1) time.

The skeleton code begins on the next page.

Page 12 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued…)

public class ForestPathIterator implements Iterator<String> {

 private ForestPathNode curr;

 private int dest;

 public ForestPathIterator(ForestPathNode root, int dest) {

 this.curr = root;

 this.dest = dest;
 }

 @Override

 public boolean hasNext() {

 return this.curr.label != dest;
 }

 @Override

 public String next() {

 if (this.dest > curr.label) {

 curr = curr.right;

 return "right";
 } else {

 curr = curr.left;

 return "left";
 }
 }
}

Solution: We know that our Iterator spits out Strings; we also know that our pointer points
to Nodes and our given dest is an integer. We set up these instance variables in our constructor.
hasNext() should return true until we have arrived at our dest, which is guaranteed since it is
assumed dest is in the tree. Finally, next() is in charge of figuring out whether we go left or right by
making a comparison to the current node and returns the direction "left" or "right" accordingly.

Page 13 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q5 Recycling (18 points)

Consider the following raw, singly-linked SLNode class:

 public class SLNode<T> {
 public T item;
 public SLNode<T> next;
 public SLNode(T item) {
 this.item = item;
 this.next = null;
 }
 }

Q5.1 (8 points)

Complete cyclify, which takes in a int[] arr and returns a new, circular, SLNode<Integer>
where each node corresponds to an element in the int[]. Return the last node in the resulting
circular linked list.

Assume that arr is nonempty.

For example, cyclify(new int[]{6, 6, 8, 0}) should build the circular linked list below, and
return the SLNode corresponding to 0.

6

6 8

0

return value

public SLNode<Integer> cyclify(int[] arr) {

 SLNode<Integer> curr = new SLNode<>(arr[0]);

 SLNode<Integer> head = curr;

 for (int i = 1 ; i < arr.length; i += 1) {

 curr.next = new SLNode<>(arr[i]);

 curr = curr.next;
 }

 curr.next = head;

 return curr;
}

Page 14 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Solution: Since the array is assumed to be nonempty, we can create a node with the value at arr[0],
which will be the starting point of our returned list. Then, we iterate through the array, appending a
node for each item in the list, until we get to the end of the array. We set the next pointer of the last
node to the head of our list, and return the last node.

Page 15 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Q5.2 (10 points)

Complete flatten, which takes in a (non-circular) SLNode<int[]> lst and flattens it into a (non-
circular) SLNode<Integer> as shown in the following diagram. You may use cyclify as defined
in part (a).

An example is given in the following diagram:

lst begins at the SLNode containing [5, 3].

lst

[5, 3] [0] [] [7, 2, 3]

after flattening:

return value

5 3 0 7 2 3

public SLNode<Integer> flatten(SLNode<int[]> lst) {

 if (lst == null) {
 return null;
 }

 SLNode<Integer> rest = flatten(lst.next);

 if (lst.item.length == 0) {
 return rest;
 }

 SLNode<Integer> lastOfCurr = cyclify(lst.item);

 SLNode<Integer> result = lastOfCurr.next;

 lastOfCurr.next = rest;
 return result;
}

Page 16 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued…)

Solution: We make heavy use of the recursive leap of faith here.

The base case is when you have an empty lst (i.e., lst == null). In that case, the list is already
flattened, so we just return null.

Otherwise, we flatten the rest of the list via recursion.

For the current node, we cyclify it to get something that is almost flat, and get the head of the list by
using the circular structure. Then we can reassign the next pointer of the last node in the cyclified
node to point to the rest of the list, and finally return the head of the list (which we saved in a temp
variable).

Page 17 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q6 Critical Thinking (14 points)

Noah is brainstorming Ideas for the midterm, and he wants to know which are bad Ideas.

Fortunately, Noah knows there’s always a Critic who can review any Idea:

 public interface Idea {
 // methods not shown
 }

 public interface Critic {
 /* Returns how good a given Idea is. */
 int review(Idea idea);
 }

Q6.1 (4 points) Complete CriticComparator, which takes in some Idea. It compares two Critics
according to their review values of that Idea (in natural order).

public class CriticComparator implements Comparator<Critic> {
 // Add instance variables (if any needed) here

 private Idea idea;
 public CriticComparator(Idea idea) {

 this.idea = idea;
 }

 @Override
 public int compare(Critic c1, Critic c2) {

 return c1.review(idea) - c2.review(idea);
 }
}

Solution: We need to keep track of the Idea passed into the constructor of CriticComparator
(note that public Idea idea or Idea idea also works). Then, when compare is called,
we review this Idea according to each Critic and return a positive, negative or 0 integer
accordingly.

Page 18 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Q6.2 (10 points)

Complete IdeaComparator, which considers an array of Critics called consideredCritics.

It compares two Ideas (in natural order) according to their highest respective Critic review across
all Critics being considered.

You may assume there is at least one Critic being considered when compare is called.

You may use CriticComparator as defined in the previous subpart in addition to any classes or
methods on the reference sheet.

public class IdeaComparator implements Comparator<Idea> {
 private Critic[] consideredCritics;
 public IdeaComparator() { ... }

 @Override
 public int compare(Idea idea1, Idea idea2) {

 CriticComparator c1 = new CriticComparator(idea1);

 CriticComparator c2 = new CriticComparator(idea2);

 Critic bestCritic1 = Collections.max(consideredCritics, c1);

 Critic bestCritic2 = Collections.max(consideredCritics, c2);

 return bestCritic1.review(idea1) - bestCritic2.review(idea2);
 }
}

Page 19 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued…)

Solution: First, we need to find the Critic in critics that gives the highest review for each Idea
passed in to compare. To do this, we create two new CriticComparators and use Collections.max
(example on the reference sheet) to find the highest reviewing critic of each idea. Finally, we return
which Ideas best Critic review was higher.

Alternate solution with sort:

Note that sort is destructive, so creating a new Critic[] is invalid, and Collections.sort does
not work on arrays. Arrays also do not have sort as an instance method.

public class IdeaComparator implements Comparator<Idea> {
 private Critic[] consideredCritics;
 public IdeaComparator() { ... }

 @Override
 public int compare(Idea idea1, Idea idea2) {

 Arrays.sort(consideredCritics, new CriticComparator(idea1));

 Critic c1 = consideredCritics[consideredCritics.length-1];

 Arrays.sort(consideredCritics, new CriticComparator(idea2));

 Critic c2 = consideredCritics[consideredCritics.length-1];

 return c1.review(idea1) - c2.review(idea2);

 }
}

Page 20 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q7 Un-Noah-ble (20 points)

Q7.1 (4 points) What is the runtime of naa(N) in terms of 𝑁?

public void naa(int N) {
 int b = 61;
 if (N <= 1) {
 return;
 }
 if (Math.random() <= 0.0001) {
 b = 8;
 naa(N - 1);
 }
 for (int i = 1; i < b; i += 7) {
 System.out.println("yum");
 }
}

Best case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Θ(1). Note that the for loop runs in constant time.

In the best case, the Math.random if-case is never entered, so the runtime is Θ(1), as there is no
recursion.

Worst case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Θ(𝑁). In the worst case, we enter the Math.random case at every recursive call. We
have constant work per node and the N-1 recursive calls will lead to a linked list recursive tree
with height 𝑁 . This is 1 + 1 +…+ 1 runtime with 𝑁 terms, which is Θ(𝑁).

Page 21 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.2 (4 points) What is the runtime of melo(N) in terms of 𝑁?

public void melo(int N) {
 if (N <= 1) {
 return;
 }
 melo(N / 2);
 if (N % 2 == 0) {
 melo(N / 2);
 }
}

Best case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Θ(log𝑁). In the best case, the if case is never entered. This would result in a linked list
recursive tree with height log𝑁 , with constant work per node, for a total runtime of Θ(log𝑁).

Note that a value of 𝑁 always exists for which the if case is never entered, namely values of 𝑁 =
2𝑘 − 1 for some 𝑘 (one less than a power of two).

Worst case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Θ(𝑁). In the worst case, the if case is always entered. This results in a recursive tree
with height log𝑁 that splits in half at each level, with each node doing constant work. Summing
each level gives 1 + 2 + 4 + 8 +…+ 𝑁

2 which is Θ(𝑁).

Note that a value of 𝑁 always exists for which the if case is always entered, namely values of
𝑁 = 2𝑘 for some 𝑘 (powers of two).

Page 22 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.3 (6 points) What is the runtime of baco(N) in terms of 𝑁?

public void baco(int N) {
 int[] spaghett = new int[N];
 spaghett[0] = Math.round(Math.random());

 for (int i = 0; i < N - 1; i += 1) {
 spaghett[i + 1] = 0;
 for (int x = 0; x < spaghett[i]; x += 1) {
 spaghett[i + 1] += 2;
 }
 }
}

Best case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Θ(𝑁). The inner loop with 𝑥 never runs if spaghett[0] is 0, so in the best case, only
the 𝑖 outer loop runs 𝑁 times with constant work per iteration, for a runtime of Θ(𝑁).

Worst case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Θ(2𝑁). In the worst case, the inner loop will be entered at each iteration. Then the loop
corresponding to spaghett[0] runs once, which will update spaghett[1] to be 2. The loop
corresponding to spaghett[1] will run 𝑁 times, causing spaghett[2] to be 2 + 2 = 4. The
loop corresponding to spaghett[2] runs 4 times, then the one corresponding to spaghett[3]
will run 8 times, and so on, until we reach spaghett[N - 2], which will run 2𝑁−2 times. The
runtime is then 1 + 2 + 4 + 8 +…+ 2𝑁−2 ∈ Θ(2𝑁).

Page 23 of 26

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued…)

Q7.4 (6 points) What is the runtime of rame(N) in terms of 𝑁?

public void rame(int N) {
 for (int i = 1; i < N; i *= 2) {
 sush(i);
 }
}

private void sush(int i) {
 if (i >= 1) {
 sush(i / 2);
 }
}

Best case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Worst case:

Θ(1) Θ(log(log𝑁)) Θ(log𝑁) Θ((log𝑁)2) Θ(
√
𝑁)

Θ(𝑁) Θ(𝑁 log𝑁) Θ(𝑁2) Θ(𝑁2 log𝑁) Θ(𝑁3)
Θ(𝑁3 log𝑁) Θ(2𝑁) Θ(𝑁!) Θ(𝑁𝑁) Infinite loop

Solution: Best and worst case is Θ((log𝑁)2). rame will create a bunch of nodes in the recursive tree
with values 𝑖 = 1, 2, 4, 8,…,𝑁 . Then, sush(i) will result in several branches according to each of
those nodes. The first will have height 1, the second has height 2, the third has height 3, then 4, and
so on, until the last branch has height log𝑁 . So in total the runtime is 1 + 2 + 3 + 4 +…+ log𝑁 ∈
Θ((log𝑁)2), and the best and worst cases are identical.

Page 24 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q8 Am I Worth Nothing to You? (0 points)

Congrats on finishing the exam! The below questions are just for fun; nothing on this page is worth
any points.

Q8.1 (0 points) Which people, if any, are telling the truth?

Karen: “If Noah is telling the truth, then I am lying.”

Noah: “Karen and Wilson are both liars!”

Wilson: “If Noah is lying, then all of us are lying.”

Karen Noah Wilson

None of the above

Solution: Suppose Noah is truthful. Then Karen and Wilson are both lying. Since Noah is
truthful, Karen’s statement reduces to “I am lying”, a true statement! This contradicts Noah’s
testimony (that Karen is lying), so Noah must be lying.

This means either Karen or Wilson (or both) must be truthful. This also reduces Wilson’s
statement to “all of us are lying”.

Suppose Wilson is truthful. Then everyone is lying, which means Wilson must be lying, contra-
dicting the assumption that Wilson is truthful. So Wilson must also be lying.

If Karen was lying, then Wilson’s statement (everyone is lying) would be true, but Wilson is a
liar, so Wilson’s statement can’t be true!

So Karen must be telling the truth.

Q8.2 (0 points; one cookie from Dawn) Who is NOT on CS61BL staff this semester?

Samuel

Stacey

Andrew

David

Teresa

Rico

Eric

Miller

Benjamin

LeBron

Curtis

Julian

Erik

Alonzo

Gabe

Susie

Yinqi

Jonah

Kanav

Lawrence

Noelle

Stanley

Yashna

Sophia

Kevin

Dennis

Anniyat

Amanda

Apollo

Circle

Page 25 of 26

This content is protected and may not be shared, uploaded, or distributed.

Q8.3 (0 points) Leave any feedback, comments, and/or drawings in the box below!

Page 26 of 26

This content is protected and may not be shared, uploaded, or distributed.

	Amy's Ponies
	Addicted Drinkers of Tea (ADTs)
	Would You Like to Get Foo'd
	Field of Hopes and Dreams
	Recycling
	Critical Thinking
	Un-Noah-ble
	Am I Worth Nothing to You?

