CS 61BL Midterm
Summer 2029 Friday, July 18th, 2025

PrINT Your Name:

PrINT Your Student ID:

PrINT Student name to your left:

PrINT Student name to your right:

You have 110 minutes. There are 8 questions of varying credit. (100 points total)

Question: | 1 2 3 4 5 6 7 8 | Total
Points: 12 8 9 19 | 18 | 14 | 20 0 100

For questions with circular bubbles, select only ~ For questions with square boxes, you may select

one choice (there is only one correct answer). one or more choices (select all that apply).
QO Unselected option (Completely unfilled) B You can select
@ Don’t do this (it will be graded as incorrect) B multiple squares

@ Only one selected option (completely filled) [V Don’t do this (it will be graded as incorrect)

+ Anything you write outside the answer boxes or you eress-eut will not be graded. If you write multiple
answers or your answer is ambiguous, we will grade the worst interpretation.

« Unless otherwise specified, all data structures and algorithms behave according to their implementation
in lecture or lab, with no additional optimizations, and all relevant libraries have been imported.

« If an implementation detail (e.g. tiebreaking scheme, linked list topology) is relevant, it will be explicitly
noted in the question.

« You may write at most one statement per blank and you may not use more blanks than provided.

+ Your answer will be reformatted according to the 61B/L style guidelines. For example, any method,
constructor, or if-statement requires at least three lines for the purposes of determining line count.

+ You may not use ternary operators, lambdas, streams, or multiple assignment.

Read the honor code below and sign your name.

By signing below, I affirm that all work on this exam is my own work. I have not referenced any
disallowed materials, nor collaborated with anyone else on this exam. I understand that if I cheat on

the exam, I may face the penalty of an “F” grade and a referral to the Center for Student Conduct.

SIGN your name:

Page 1 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q1 Amy’s Ponies

Consider the code below.

public interface Magical {
default void useMagic() {
System.out.println("ZAP!");
}
}

public class Horse {
public static String species = "equus";
private int weight;

public Horse() {
this.weight = 900;
System.out.println("Horse");

}

public Horse(int weight) {
this.weight = weight;
System.out.println("Weight: " + weight);
}

public void neigh() {
System.out.println("Neigh!");
}
}

public class Unicorn extends Horse implements Magical {

private int magicLevel;

public Unicorn(int magicLevel, int weight) {
super (weight) ;
this.magicLevel = magicLevel;

}

@Override

public void neigh() {
System.out.println("Friendship!");

}

@Override

public void useMagic() {
System.out.println("MAGIC!");

}

Page 2 of 16

This content is protected and may not be shared, uploaded, or distributed.

(12 points)

(Question 1 continued...)

Q1.1 (12 points)
Write what each line would output in the box to the right of that line.

If the line would result in a compiler error, leave the box blank and bubble “CE”. If the line would
result in a runtime error, leave the box blank and bubble “RE”. In either error case, continue as if
that line was never run.

If no output is printed, and the line would not error, write the word “nothing” (without the quotes).

The first few lines have been given for you.

System.out.println("Welcome!"); OCE ORE Welcome!
String to = "the"; OCE ORE nothing
int exam = "!"; ® CE ORE

Horse appleJack = new Horse(); OCE ORE

Magical pinkiePie = new Horse(); OCE ORE

Unicorn twilight = new Unicorn(10, 50); O CE ORE

Magical sparkle = twilight; OCE ORE

Unicorn princessCelestia = new Horse(); OCE ORE

Unicorn rarity = (Unicorn) applelJack; O CE ORE

twilight.neigh(); OCE ORE

twilight.useMagic(Q); OCE ORE
Page 3 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q2 Addicted Drinkers of Tea (ADTs) (8 points)

Noah, Wilson, and Karen all want to buy boba for every Student in the world. For each of the below
subquestions, choose the best abstract data type (ADT) to use. Each subpart is independent from the other
subparts.

Your options for ADTs are List, Set, Map, Queue, or Stack.

Q2.1 (2 points) Noah would like to know how far different buildings (represented by the Building class)
are from CS61BobaShop. For example, Evans Hall is 61.8 kilometers from CS61BobaShop.
Write your chosen ADT, including the generic type(s):

Example answers: List<Building> or Map<Integer, String>

Q2.2 (2 points) Students (represented by the Student class) who order last receive their boba first
(slightly unfair, yes). Wilson wants to keep track of the next student to receive their boba. Students
are tracked immediately after ordering.

Write your chosen ADT, including the generic type(s):

Q2.3 (2 points) Karen asks students (represented by the Student class) to go into a tree formation, where
every student represents a node. When distributing boba, Karen gives them to students in increasing
order of distance from the root node (breaking ties arbitrarily). As she distributes boba, Karen wants
to know which student is the next to receive boba.

Write your chosen ADT, including the generic type(s):

Q2.4 (2 points) Every time a student (represented by the Student class) mentions a boba type (repre-
sented by the Boba class), Michelle wants to know whether or not that boba type was mentioned
before by any student.

Write your chosen ADT, including the generic type(s):

Page 4 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q3 Would You Like to Get Foo’d

Q3.1 (9 points) Consider the following code:

class Foo {
private int x;

public Foo(int x) {
this.x = x;

b
b

(9 points)

Codey is considering implementations for boolean equals(Object obj) { ... }inFoo.

We instantiate three Foo objects foo1, f002, 003, each with an arbitrary (not necessarily unique)

value of x.

Then, we create a new Set according to some Set implementation, and insert fool, foo2, and

f003, in that order, into this newly created Set.

Select whether each equals implementation always, sometimes, or never results in the respective
final resulting Set after inserting all of foo1, f002, 003, in that order.

Note: Assume nonempty Sets call equals when checking for duplicates.

Final result after inserting all of foo1, 002, 003 into an empty Set

equals implementation {foo1} {fool, foo2} {fool, foo2, foo3}
O Always O Always O Always
return this == obj; QO Sometimes QO Sometimes QO Sometimes
O Never O Never O Never
O Always O Always O Always

Foo £ = (Foo) obj;
return ((this.x % 2)
= (f.x % 2));

QO Sometimes

QO Never

O Sometimes

O Never

O Sometimes

QO Never

Foo f = (Foo) obj;
this.x = f£.x;
return this.x == f.x;

QO Always
QO Sometimes

O Never

O Always
QO Sometimes

O Never

QO Always
QO Sometimes

O Never

Page 5 of 16

This content is protected and may not be shared, uploaded, or distributed.

This page intentionally left (mostly) blank

The exam continues on the next page.

Page 6 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q4 Field of Hopes and Dreams (19 points)

Lancer has built a devious forest maze in the shape of a Binary Search Tree, with an int label at each
node. As with standard BSTs, there are no duplicate labels.
Q4.1 (6 points)

Below is one of the BST mazes that Lancer could have built, with labels hidden by unknown
variables a through h (not in alphabetical order).

For the following logical comparisons, identify whether they are always, sometimes, or never true
depending on the values of the variables a through h.

a>c
O Always O Sometimes O Never
-
O Always O Sometimes O Never
d<e
O Always O Sometimes O Never
(b+d)>a
O Always QO Sometimes O Never
(c—h) <0
O Always QO Sometimes O Never
(b+d) ==
O Always QO Sometimes O Never
Page 7 of 16

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued...)

Q4.2 (13 points) Lancer builds a ForestPathNode class to represent his BST maze.

public class ForestPathNode {
public int label;
public ForestPathNode left;
public ForestPathNode right;

// ... methods not shown ...
}

Suppose that the heroes know the correct label of their desired destination dest. Build a
ForestPathIterator that returns the correct path from the input node to the node with the given
label, using the directions "left" and "right".

Below is an example BST forest maze:

« A ForestPathIterator that takes in the root node of the above forest maze and a dest of 5
should exhaust its elements after next () returns "left", then "right", then "right".

« A ForestPathIterator that takes in the root node and a dest of 8 should exhaust its elements
after next () returns "right".

Assume that the given dest is in the maze.
Your solution should construct in ©(1) time.

The skeleton code begins on the next page.

Page 8 of 16

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued...)

public class ForestPathIterator implements Iterator< > {
private curr;
private dest;

public ForestPathIterator (ForestPathNode root, int dest) {

@0verride

public boolean hasNext() {

return H
}
@0verride
public next () {
if () {
curr = 5
return H
} else {
curr = H
return H
}
}
T
Page 9 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q5 Recycling

Consider the following raw, singly-linked SLNode class:

public class SLNode<T> {
public T item;
public SLNode<T> next;
public SLNode(T item) {
this.item = item;
this.next null;

Q5.1 (8 points)

(18 points)

Complete cyclify, which takes in a int[] arr and returns a new, circular, SLNode<Integer>
where each node corresponds to an element in the int []. Return the last node in the resulting

circular linked list.

Assume that arr is nonempty.

For example, cyclify(new int[]1{6, 6, 8, 0}) should build the circular linked list below, and

return the SLNode corresponding to O.

return value

public SLNode<Integer> cyclify(int[] arr) {

SLNode< > curr =
SLNode< > head =
for (int i = ;

}

return curr;

Page 10 of 16

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.2 (10 points)

Complete flatten, which takes in a (non-circular) SLNode<int [1> 1st and flattens it into a (non-
circular) SLNode<Integer> as shown in the following diagram. You may use cyclify as defined
in part (a).

An example is given in the following diagram:

1st begins at the SLNode containing [5, 3].

1st
after flattening:

return value

public SLNode<Integer> flatten(SLNode<int[]> 1st) {

if () {
return null;

}

SLNode< > rest = ;

if () {
return rest;

}

SLNode< > last0fCurr = 5

SLNode<Integer> result = H

return result;

Page 11 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q6 Critical Thinking (14 points)

Noah is brainstorming Ideas for the midterm, and he wants to know which are bad Ideas.

Fortunately, Noah knows there’s always a Critic who can review any Idea:

public interface Idea { public interface Critic {
// methods not shown /* Returns how good a given Idea is. */
} int review(Idea idea);
}

Q6.1 (4 points) Complete CriticComparator, which takes in some Idea. It compares two Critics
according to their review values of that Idea (in natural order).

public class CriticComparator implements Comparator<Critic> {
// Add instance variables (if any needed) here

public CriticComparator(Idea idea) {

}

@0verride
public int compare(Critic c1, Critic c2) {

Page 12 of 16

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued...)

Q6.2 (10 points)
Complete IdeaComparator, which considers an array of Critics called consideredCritics.

It compares two Ideas (in natural order) according to their highest respective Critic review across
all Critics being considered.

You may assume there is at least one Critic being considered when compare is called.

You may use CriticComparator as defined in the previous subpart in addition to any classes or
methods on the reference sheet.
public class IdeaComparator implements Comparator<Idea> {

private Critic[] consideredCritics;
public IdeaComparator() { ... }

@0Override
public int compare(Idea ideal, Idea idea2) {

return H

Page 13 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q7 Un-Noah-ble (20 points)

Q7.1 (4 points) What is the runtime of naa(N) in terms of N?

public void naa(int N) {

int b = 61;

if (N<=1) {
return;

}

if (Math.random() <= 0.0001) {
b = 8;
naa(N - 1);

}

for (int i =1; 1 < b; i +=7) {
System.out.println("yum");

}

}
Best case:

O o) O O(log(logN)) O O(logN) O ©((logN)?) O 6(VN)

O e(N) O ©(NlogN) QO O(N?) O ©(N?logN) O O(N?3)

O 6(N3logN) O ©(2V) O o(nNY) O e(nY) O Infinite loop
Worst case:

O e() O ©(log(log N)) O O(log N) O ©((logN)?) O 6(VN)

O 6(N) O ©6(NlogN) O 6(N?) O 6(N%logN) O ©(N?)

O 6(N3logN) QO 0(2V) O o(nNY) O e(NN) O Infinite loop

Q7.2 (4 points) What is the runtime of melo(N) in terms of N?

public void melo(int N) {
if (N <=1) {
return;
}
melo(N / 2);
if (N % 2 ==0) {
melo(N / 2);

}

}
Best case:

O e(1) O O(log(logN)) O ©(logN) O 6((logN)?) O ©(VN)

O e(N) O 6(NlogN) QO ©O(N?) O 6(N?logN) QO O(N?)

O 6(N3logN) O ©(2V) O o(nNY) O e(NN) O Infinite loop
Worst case:

O e() O ©(log(log N)) O O(log N) O ©((logN)?) O ©(VN)

O 6(N) O ©6(NlogN) QO 6(N?) O 6(N%logN) O ©(N?)

O 6(N3logN) QO 6(2V) O o(NY) O e(NN) O Infinite loop

Page 14 of 16

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued...)

Q7.3 (6 points) What is the runtime of baco (N) in terms of N?

public void baco(int N) {
int[] spaghett = new int[N];
spaghett[0] = Math.round(Math.random());

for (int 1 = 0; i < N - 1; i +=1) {
spaghett[i + 1] = 0;
for (int x = 0; x < spaghett[i]l; x += 1) {
spaghett[i + 1] += 2;

}
}

}
Best case:

O e) O O(log(log N)) O O(log N) O 6((logN)?) O 6(VN)

O e(n) O ©6(NlogN) QO O(N?) O 6(N?logN) QO O(N?)

O 6(N3logN) O ©(2V) O e(n)) O e(nNY) O Infinite loop
Worst case:

O e@) O 6(log(log N)) O 6(log N) O O((logN)?) O 6(VN)

O o(N) O 6(NlogN) QO O(N?) O 6(N?logN) O O(N?3)

O 6(N3logN) O ©(2V) O o(nN) O e(NN) O Infinite loop

Q7.4 (6 points) What is the runtime of rame (N) in terms of N?

public void rame(int N) {
for (int 1 = 1; i < N; i *= 2) {
sush(i);
}
}

private void sush(int i) {
if (1 >=1) {
sush(i / 2);

}

}
Best case:

O e(1) O O(log(logN)) O ©(logN) O ©((logN)?) O 6(VN)

O 8(N) O 6(NlogN) QO O(N?) O ©(N?logN) O O(N?3)

O 6(N3logN) O ©(2V) O o(nNY) O e(nNY) O Infinite loop
Worst case:

O e) O 6(log(log N)) O ©(logN) O 6((logN)*) O ©(VN)

O o(N) O ©6(NlogN) O ©(N?) O 6(N?1ogN) O 6(N?)

O 6(N3logN) O ©6(2V) O e(nNY) O o(NN) O Infinite loop

Page 15 of 16

This content is protected and may not be shared, uploaded, or distributed.

Q8 Am I Worth Nothing to You? (0 points)

Congrats on finishing the exam! The below questions are just for fun; nothing on this page is worth
any points.
Q8.1 (0 points) Which people, if any, are telling the truth?
Karen: “If Noah is telling the truth, then I am lying.”
Noah: “Karen and Wilson are both liars!”
Wilson: “If Noah is lying, then all of us are lying.”
[] Karen [] Noah [] wilson

QO None of the above

Q8.2 (0 points; one cookie from Dawn) Who is NOT on CS61BL staff this semester?

[] samuel [Eric [] Erik [] Kanav] Kevin
[] Stacey [Miller [] Alonzo [J Lawrence [] Dennis
[] Andrew [] Benjamin [] Gabe [] Noelle [] Anniyat
[] David [] LeBron [] susie [stanley [] Amanda
[] Teresa [curtis [Yingi [] Yashna [] Apollo
] Rico [] Julian [] Jonah [] Sophia [] circle

Q8.3 (0 points) Leave any feedback, comments, and/or drawings in the box below!

Page 16 of 16

This content is protected and may not be shared, uploaded, or distributed.

	Amy's Ponies
	Addicted Drinkers of Tea (ADTs)
	Would You Like to Get Foo'd
	Field of Hopes and Dreams
	Recycling
	Critical Thinking
	Un-Noah-ble
	Am I Worth Nothing to You?

