FAQ #
Each assignment will have an FAQ linked at the top. You can also access it by adding “/faq” to the end of the URL. The FAQ for Lab 17 is located here.
Introduction #
As usual, pull the files from the skeleton and make a new IntelliJ project.
Linked lists \(\subseteq\) Trees \(\subseteq\) Graphs #
One of the first data structures we studied in this course was the linked list, which consisted of a set of nodes connected in sequence. Then, we looked at trees, which were a generalized version of linked lists. We can consider a tree as a linked list if we relaxed the constraint that a node could only have one child. Now, we’ll look at a generalization of a tree, called a graph. We can consider a graph as a tree if we relaxed the constraint that we can’t have cycles.
In a graph, we still have a collection of nodes, but each node in a graph can be connected to any other node without limitation. This means there isn’t necessarily a hierarchical structure like we get in a tree. For example, here’s a tree, where every node is descended from one another:
Now suppose we add an edge back up the tree, like this:
Notice the hierarchical structure is broken. Is \(C\) descended from \(A\) or is \(A\) descended from \(C\)? This is no longer a tree, but it is still a graph!
There are other edges that are not allowed in a tree, but are allowed in a graph. Let’s take a look at the following:
Now, node E looks like it is descended from two nodes. Again, this is no longer a tree but it is a graph.
In general, a graph can have any possible connection between nodes, as shown below:
Graphs #
Graphs are a good way to represent relationships between objects. First, let’s go over some terminology. A node in a graph is called a vertex. Vertices usually represent the objects in our graph (the things that have the relationships such as people, places, or things). A relationship between two vertices is represented by an edge.
Here are a few examples of graphs in the everyday world:

Road maps are a great example of graphs. Each city is a vertex, and the edges that connect these vertices are the roads and freeways that connect the cities. An abstract example of what such a graph would look like can be found here. For a more local example, each building on the Berkeley campus can be thought of as a vertex, and the paths that connect those buildings would be the edges.

Computer networks are also graphs. In this case, computers and other network machinery (like routers and switches) are the vertices, and the edges are the network cables. For a wireless network, an edge is an established connection between a single computer and a single wireless router.
Directed vs. Undirected Graphs #
If all edges in a graph are showing a relationship between two vertices that works in both directions, then it is called an undirected graph. A picture of an undirected graph looks like this:
But not all edges in graphs are the same. Sometimes the relationships between two vertices only go in one direction. Such a relationship can be represented with a directed graph. An example of this could be a city map, where the edges are sometimes oneway streets between locations. A twoway street would have to be represented as two edges, one of them going from location \(A\) to location \(B\), and the other from location \(B\) to location \(A\).
Visually, an undirected graph will not have arrow heads on its edges because the edge connects the vertices in both directions. A directed graph will have arrow heads on its edges that point in the direction the edge is going. An example of a directed graph appears below.
Any undirected edge can be represented with 2 directed edges. This means every undirected graph is a directed graph, but the converse is not true.
Graph Definitions #
Now that we have the basics of what a graph is, here are a few more terms that might come in handy while discussing graphs.
Term  Definition 

Adjacent  A vertex u is adjacent to a vertex v if v has an edge connecting to u . 
Path  A path is a sequence of edges from one vertex to another where no edge or vertex is repeated. 
Connected  A graph is connected if every vertex has a path to all other vertices. 
Neighbor  A vertex u is a neighbor of a vertex v if they are adjacent. 
Incident to an edge  A vertex that is an endpoint of an edge is incident to it 
Indegree  A vertex v ’s indegree is the number of vertices u where a directed edge from u to v exists. 
Outdegree  A vertex v ’s outdegree is the number of vertices u where a directed edge from v to u exists. 
Degree  A vertex v ’s degree is the number of vertices adjacent to it. Note the we calculate the degree of a vertex for undirected graphs, and indegree/outdegree for directed graphs. 
Cycle  A cycle is a path that ends at the same vertex where it originally started. 
Exercise: Edge vs. Vertex Count #
For the following questions, discuss your solution with someone in your lab.
Exercise 1 #
Suppose that \(G\) is a directed graph with \(N\) vertices. What’s the maximum number of edges that \(G\) can have? Assume that a vertex cannot have an edge pointing to itself, and that for each vertex \(u\) and \(v\), there is at most one edge \((u, v)\).
Options:
\[N, N^2, N(N1), \frac{N(N1)}{2}\]
Solution #
N(N1). There are N vertices and each one can have an edge to each of the other N1 vertices.
Exercise 2 #
Now suppose the same graph \(G\) in the above question is an undirected graph. Again assume that no vertex is adjacent to itself, and at most one edge connects any pair of vertices. What’s the maximum number of edges that \(G\) can have compared to the directed graph of \(G\)?
Options:
 half as many edges
 the same number of edges
 twice as many edges
Solution #
Half as many edges. Every pair of directed edges u>v, v>u can be represented with a single undirected edge.
Exercise 3 #
What’s the minimum number of edges that a connected undirected graph with N vertices can have?
Options:
\[N  1, N, N^2, N(N1), \frac{N(N1)}{2}\]
Solution #
N1. A graph with 1 vertex needs 0 edges to be connected. Every time you add a new vertex you need minimum one new edge to connect it.
Graph Representation #
Now that we know how to draw a graph on paper and understand the basic concepts and definitions, we can now consider how a graph should be represented inside of a computer. We want to be able to get quick answers for the following questions about a graph:
 Are given vertices
u
andv
adjacent?  What vertices are adjacent to
v
?  What edges are incident to
v
?
The next portion of today’s lab will involve thinking about how fast and how efficient each of these operations is using different representations of a graph.
Imagine that we want to represent a graph that looks like this:
One data structure we could use to implement this graph is called an array of adjacency lists. In such a data structure, an array is created that has the same size as the number of vertices in the graph. Each position in the array represents one of the vertices in the graph. Each of these positions point to a list. These lists are called adjacency lists, as each element in the list represents a neighbor of the vertex.
The array of adjacency lists (using linked lists) that represents the above graph looks like this:
Another data structure we could use to represent the edges in a graph is called an adjacency matrix. In this data structure, we have a two dimensional array of size \(N \times N\) (where \(N\) is the number of vertices) which contains boolean values. The entry (i, j) in this matrix is true when there is an edge from i to j, and false when no such edge exists. Thus, each vertex has a row and a column in the matrix, and the boolean values in that row/column represent the existence of outgoing/incoming edges to/from each other vertex.
The adjacency matrix that represents the above graph looks like this:
What will this matrix will look like for an undirected graph? Discuss with someone in your lab. Considering drawing out the matrix and trying to notice some patterns.
Discussion: Representation #
A third data structure we could use to represent a graph is simply an extension
of the linked nodes idea. We can create a Vertex
object for each vertex in
the graph, and each of Vertex
will contain pointers to the Vertex
objects of
their neighbors. This may seem like the most straightforward approach: aren’t
the adjacency list and adjacency matrix roundabout in comparison?
Discuss with someone in your lab reasons for why the adjacency list or adjacency matrix might be preferred for a graph. Consider the runtime of our desired graph operations.
Additionally, we could also represent a tree using an adjacency matrix or list. Discuss why an adjacency list or adjacency matrix might not be preferred for a tree.
Now, which is generally more efficient: an adjacency matrix or an array of adjacency lists?
Exercise: Graph.java
#
We have given you framework code for a class Graph
. It implements a graph of
integers using adjacency lists.
Fill in the following methods:
public void addEdge(int v1, int v2, int weight);
public void addUndirectedEdge(int v1, int v2, int weight);
public boolean isAdjacent(int from, int to);
public List<Integer> neighbors(int vertex);
public int inDegree(int vertex);
Graph Traversals #
Earlier in the course, we used the general traversal algorithm to process all elements of a tree:
Stack<TreeNode> fringe = new Stack<>();
fringe.push(root);
while (!fringe.isEmpty()) {
TreeNode node = fringe.pop();
process(node);
fringe.push(node.right);
fringe.push(node.left);
}
The code above processes the tree’s values in depthfirst order. If we wanted a
breadthfirst traversal of a tree, we’d replace the Stack
with a queue such
as a LinkedList
.
Now, how would we modify this algorithm to traverse a graph?
Analogous code to process every vertex in a connected graph may look something like:
Stack<Vertex> fringe = new Stack<>();
fringe.push(startVertex);
while (!fringe.isEmpty()) {
Vertex v = fringe.pop();
process(v);
for (Vertex neighbor: v.neighbors) {
fringe.push(neighbor);
}
}
However, this doesn’t quite work. Unlike trees, a graph may contain a cycle of vertices and as a result, the code will loop infinitely.
We don’t want to process the same vertex more than once, so the fix is to keep track of vertices that we’ve put on our fringe and the vertices that we’ve visited already. Here is the correct pseudocode for graph traversal:
Stack<Vertex> fringe = new Stack<>();
HashSet<Vertex> visited = new HashSet<>();
fringe.push(startVertex);
while (!fringe.isEmpty()) {
Vertex v = fringe.pop();
if (!visited.contains(v)) {
process(v);
visited.add(v);
for (Vertex neighbor: v.neighbors) {
fringe.push(neighbor);
}
}
}
Discussion: A Graph Traversal Modification #
Instead of checking that the popped vertex v
is
not yet visited, suppose we do this check before adding some neighbor to the
fringe. The body of the while
loop would then look like the below:
Vertex v = fringe.pop();
process(v);
for (Vertex neighbor: v.neighbors) {
if (!visited.contains(neighbor)) {
fringe.push(neighbor);
visited.add(neighbor);
}
}
Would this change work?
Answer: #
Yes, this would work. Although it is convention to check that the popped vertex is not yet visited.
Note that the choice of data structure for the fringe can change. As with tree traversal, we can visit vertices in depthfirst or breadthfirst order merely by choosing a stack or a queue to represent the fringe. In the next lab session we will see applications that use a priority queue to implement something more like bestfirst traversal.
Exercise: Practice Graph Traversal #
Suppose we are using the graph traversal code from the last example, copied below:
Stack<Vertex> fringe = new Stack<>();
HashSet<Vertex> visited = new HashSet<>();
fringe.push(startVertex);
while (!fringe.isEmpty()) {
Vertex v = fringe.pop();
if (!visited.contains(v)) {
process(v);
visited.add(v);
for (Vertex neighbor: v.neighbors) {
fringe.push(neighbor);
}
}
}
Determine the order in which the nodes are visited if you start at vertices 1 through 5. Break ties by defaulting to the smaller vertex number first (ie. if a node has multiple neighbors, visit its lowest number neighbor first). In other words, fill in the table below:
Starting vertex  Order of visiting remaining vertices 

1  
2  
3  
4  
5 
Answers for Practicing Graph Traversal #
Starting vertex  Order of visiting remaining vertices 

1  3, 4, 2, 5, 7, 6, 9, 8, 10 
2  4, 3, 1, 6, 7, 5, 8, 9, 10 
3  1, 4, 2, 5, 7, 6, 9, 8, 10 
4  2, 5, 7, 3, 1, 6, 9, 8, 10 
5  2, 4, 3, 1, 6, 7, 8, 9, 10 
Read the code: DFSIterator
#
Read through the DFSIterator
inner class. As its name suggests, it iterates
through all of the vertices in the graph in DFS order, starting from a vertex
that is passed in as an argument.
Note: This iterator may not print out all the vertices in the graph if they are unreachable from the starting vertex, and that’s okay!
Exercise: pathExists
#
Complete the method pathExists
in Graph.java
, which returns whether or not
any path exists that goes from start
to stop
. Remember that a path is any
set of edges that exists which you can follow that such you travel from one
vertex to another by only using valid edges. Additionally, you may use
the generateGX
methods to generate some sample Graph
s to test your
implementation for this method (and the following methods)!
In addition, paths may not visit an edge or a vertex more
than once. You may find it helpful for your method to call the dfs
method,
which uses the DFSIterator
class.
Exercise: path
#
Now you will actually find a path from one vertex to another if it exists. Write
code in the body of the method named path
that, given a start
vertex and a
stop
vertex, returns a list of the vertices that lie on the path from start
to stop
. If no such path exists, you should return an empty list.
Hint: Base your method on dfs
, with the following differences. First, add
code to stop calling next
when you encounter the finish vertex. Then, trace
back from the finish vertex to the start, by first finding a visited vertex u
for which (u, finish) is an edge, then a vertex v visited earlier than u for
which (v, u) is an edge, and so on, finally finding a vertex w for which (start,
w) is an edge (isAdjacent
may be useful here!). Collecting all these vertices
in the correct sequence produces the desired path. We recommend that you try
this by hand with a graph or two to see that it works.
Topological Sort #
A topological sort (sometimes also called a linearization) of a graph is a
ordering of the vertices such that if there was a directed path from vertex v
to vertex w
in the graph, then v
precedes w
in the ordering. For instance, looking at the graph below, let A
be v
and F
be w
. Notice that there is a directed path from A
to F
, so A
must precede F
in the topological ordering.
This only works on directed, acyclic graphs, and they are commonly referred to by their acronym: DAG.
Here is an example of a DAG:
In the above DAG, a few of the possible topological sorts could be:
A B C D E F G H
A C B E G D F H
B E G A D C F H
Notice that the topological sort for the above DAG has to start with either A or B, and must end with H. (For this reason, A and B are called sources, and H is called a sink.)
Another way to think about it is that the vertices in a DAG represent a bunch of tasks you need to complete on a todo list. Some of those tasks cannot be completed until others are done. For example, when getting dressed in the morning, you may need to put on shoes and socks, but you can’t just do them in any order. The socks must be put on before the shoes. Thus, a topological sort of your morning routine must have socks appear first before shoes.
The edges in the DAG represent dependencies between the tasks. In this example above, that would mean that task A must be completed before tasks C and D, task B must be completed before tasks D and E, E before G, C and D before F, and finally F and G before H. A topological sort gives you an order in which you can do the tasks (it puts the tasks in a linear order). Informally, a topological sort returns a sequence of the vertices in the graph that doesn’t violate the dependencies between any two vertices.
Discussion: Topological Sorts and DAG’s #
Why can we only perform topological sorts on DAG’s? Think about the two properties of DAG’s and how that relates with our “todo list” analogy. Discuss your thoughts with someone in your lab.
The Topological Sort Algorithm #
One algorithm for taking a graph and finding a topological sort uses an array
named currentInDegree
with one element per vertex. currentInDegree[v]
is
initialized with the indegree of each vertex v
.
The algorithm also uses a fringe. The fringe is initialized with all vertices
whose indegree is 0. When a vertex is popped off the fringe and added to a
results list, the currentInDegree
value of its neighbors are reduced by 1.
Then the fringe is updated again with vertices whose indegree is now 0.
Exercise: TopologicalIterator
#
Implement the TopologicalIterator
class so that it successively returns
vertices in topological order as described above. The TopologicalIterator
class will slightly resemble the DFSIterator
class, except that it will use a
currentInDegree
array as described above, and instead of pushing unvisited
vertices on the stack, it will push only vertices whose indegree is 0. Try to
walk through this algorithm, where you successively process vertices with
indegrees of 0, on our DAG example above.
If you’re having trouble passing the autograder tests for the topological traversals,
think about the effect of duplicate values in the fringe on your iterator. Try
constructing a complete graph, and testing your TopologicalIterator
on that! Also make sure that your previously written methods work as intended.
Conclusion #
Deliverables #
 Complete the following methods of the
Graph
class:addEdge
addUndirectedEdge
isAdjacent
neighbors
inDegree
pathExists
path
 Complete the implementation of the following nested iterator:
TopologicalIterator